We present numerical results for the six-vertex model with a variety of boundary conditions. Adapting an algorithm for domain wall boundary conditions, proposed in the work of Allison and Reshetikhin [Ann. Inst. Fourier 55(6), 1847–1869 (2005)], we examine some modifications of these boundary conditions. To be precise, we discuss partial domain wall boundary conditions, reflecting ends, and half turn boundary conditions (domain wall boundary conditions with half turn symmetry). Dedicated to the memory of Ludwig Faddeev
REFERENCES
1.
2.
E. H.
Lieb
, Phys. Rev. Lett.
18
, 692
(1967
);E. H.
Lieb
, Phys. Rev. Lett.
18
, 1046
(1967
);E. H.
Lieb
, Phys. Rev. Lett.
19
, 108
(1967
).3.
H. J.
Brascamp
, H.
Kunz
, and F. Y.
Wu
, J. Math. Phys.
14
, 1927
(1973
).4.
A. L.
Owczarek
and R. J.
Baxter
, J. Phys. A: Math. Gen.
22
, 1141
(1989
).5.
M. T.
Batchelor
, R. J.
Baxter
, M. J.
O’Rourke
, and C. M.
Yung
, J. Phys. A: Math. Gen.
28
, 2759
(1995
).6.
V.
Korepin
, Commun. Math. Phys.
86
, 391
(1982
).7.
8.
A. G.
Izergin
, D. A.
Coker
, and V. E.
Korepin
, J. Phys. A: Math. Gen.
25
, 4315
(1992
).9.
V. E.
Korepin
and P.
Zinn-Justin
, J. Phys. A: Math. Gen.
33
, 7053
(2000
).10.
P.
Zinn-Justin
, Phys. Rev. E
62
, 3411
(2000
).11.
P. M.
Bleher
and V. V.
Fokin
, Commun. Math. Phys.
268
, 223
(2006
);P. M.
Bleher
and K.
Liechty
, Commun. Math. Phys.
286
, 777
(2009
);P. M.
Bleher
andK.
Liechty
, J. Stat. Phys.
134
, 463
(2009
);P. M.
Bleher
and K.
Liechty
, Commun. Pure Appl. Math.
63
, 779
(2010
).12.
G. T.
Barkema
and M. E. J.
Newman
, Phys. Rev. E
57
, 1155
(1998
).13.
O. F.
Syljuåsen
and M. B.
Zvonarev
, Phys. Rev. E
70
, 016118
(2004
).14.
D.
Allison
and N.
Reshetikhin
, Ann. Inst. Fourier
55
(6
), 1847
–1869
(2005
).15.
I.
Lyberg
, V.
Korepin
, and J.
Viti
, J. Stat. Mech.: Theory Exp.
2017
, 053103
.16.
R.
Keesman
and J.
Lamers
, Phys. Rev. E
95
, 052117
(2017
).17.
W.
Jockusch
, J.
Propp
, and P.
Shor
, “Random domino tilings and the arctic circle theorem
,” e-print arXiv:math.CO/9801068.18.
F.
Colomo
and A. G.
Pronko
, J. Stat. Phys.
138
, 662
–700
(2010
).19.
F.
Colomo
, A. G.
Pronko
, and P.
Zinn-Justin
, J. Stat. Mech.: Theory Exp.
2010
, L03002
.20.
F.
Colomo
and A.
Sportiello
, J. Stat. Phys.
164
, 1488
(2016
).21.
P.
Di Francesco
and M.
Lapa
, “Arctic curves in path models from the tangent method
,” J. Phys. A: Math. Theor.
51
, 155202
(2018
).22.
O.
Tsuchiya
, J. Math. Phys.
39
, 5946
(1998
).23.
G. A. P.
Ribeiro
and V. E.
Korepin
, J. Phys. A: Math. Theor.
48
, 045205
(2015
).24.
T. S.
Tavares
G. A. P.
Ribeiro
V. E.
Korepin
, J. Stat. Mech.
2015
, P06016
;T. S.
Tavares
, G. A. P.
Ribeiro
, and V. E.
Korepin
, J. Phys. A: Math. Theor.
48
, 454004
(2015
).25.
G.
Kuperberg
, Int. Math. Res. Notices
3
, 139
(1996
).26.
G.
Kuperberg
, “Symmetry classes of alternating-sign matrices under one roof
,” Ann. Math.
156
, 835
(2002
); e-print arXiv:math/0008184.27.
O.
Foda
and M.
Wheeler
, J. High Energy Phys.
2012
(7
), 186
.28.
P.
Bleher
and K.
Liechty
, J. Math. Phys.
56
, 023302
(2015
).29.
30.
I.
Cherednik
, Theor. Math. Phys.
61
, 977
(1984
);E. K.
Sklyanin
, J. Phys. A: Math. Gen.
21
, 2375
(1988
).31.
N.
Reshetikhin
, “Lectures on integrable models in statistical mechanics
,” in Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing, Proceedings of Les Houches School in Theoretical Physics
(Oxford University Press
, 2010
).32.
N.
Allegra
, J.
Dubail
, J.-M.
Stéphan
, and J.
Viti
, J. Stat. Mech.: Theory Exp.
2016
, 053108
.33.
L.
Greenberg
and D.
Ioffe
, Ann. Inst. H. Poincaré Probab. Stat.
41
, 871
–885
(2005
).34.
G.
Delfino
and J.
Viti
, J. Stat. Mech.
2012
, P10009
.35.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.