In this work, we analyze properties of generic quantum channels in the case of large system size. We use random matrix theory and free probability to show that the distance between two independent random channels converges to a constant value as the dimension of the system grows larger. As a measure of the distance we use the diamond norm. In the case of a flat Hilbert-Schmidt distribution on quantum channels, we obtain that the distance converges to , giving also an estimate for the maximum success probability for distinguishing the channels. We also consider the problem of distinguishing two random unitary rotations.
REFERENCES
1.
Aubrun
, G.
and Szarek
, S.
, Alice and Bob Meet Banach
(American Mathematical Society
, 2017
).2.
Bai
, Z.
and Silverstein
, J. W.
, Spectral Analysis of Large Dimensional Random Matrices
, Springer Series in Statistics (Springer
, 2010
).3.
Bai
, Z. D.
and Yin
, Y. Q.
, “Limit of the smallest eigenvalue of large dimensional covariance matrix
,” Ann. Probab.
21
, 1275
–1294
(1993
).4.
Ben Arous
, G.
and Bourgade
, P.
, “Extreme gaps between eigenvalues of random matrices
,” Ann. Probab.
41
, 2648
–2681
(2013
).5.
Bercovici
, H.
and Voiculescu
, D.
, “Regularity questions for free convolution
,” Oper. Theory
104
, 37
–47
(1998
).6.
Bhatia
, R.
, Matrix Analysis
, Graduate Texts in Mathematics Vol. 169 (Springer-Verlag
, New York
, 1997
).7.
Bhatia
, R.
, “Matrix factorizations and their perturbations
,” Linear Algebra Appl.
197-198
, 245
–276
(1994
).8.
Biane
, P.
, “Free Brownian motion, free stochastic calculus and random matrices
,” in Free Probability Theory
, Volume 12 of Fields Institute Communications (American Mathematical Society
, Providence, Waterloo, ON
, 1995
, 1997), pp. 1
–19
.9.
Biane
, P.
, “Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems
,” J. Funct. Anal.
144
, 232
–286
(1997
).10.
Bruzda
, W.
, Cappellini
, V.
, Sommers
, H.-J.
, and Życzkowski
, K.
, “Random quantum operations
,” Phys. Lett. A
373
, 320
–324
(2009
).11.
Choi
, M.-D.
, “Completely positive linear maps on complex matrices
,” Linear Algebra Appl.
10
, 285
(1975
).12.
Collins
, B.
, Dahlqvist
, A.
, and Kemp
, T.
, “Strong convergence of unitary Brownian motion
,” preprint arXiv:1502.06186.13.
Collins
, B.
and Nechita
, I.
, “Random quantum channels. I: Graphical calculus and the Bell state phenomenon
,” Commun. Math. Phys.
297
, 345
–370
(2010
).14.
Collins
, B.
and Nechita
, I.
, “Random matrix techniques in quantum information theory
,” J. Math. Phys.
57
, 015215
(2016
).15.
Collins
, B.
, Nechita
, I.
, and Ye
, D.
, “The absolute positive partial transpose property for random induced states
,” Random Matrices: Theory Appl.
01
, 1250002
(2012
).16.
Collins
, B.
and Śniady
, P.
, “Integration with respect to the Haar measure on unitary, orthogonal and symplectic group
,” Commun. Math. Phys.
264
, 773
–795
(2006
).17.
Davies
, E. B.
, “Lipschitz continuity of operators in the Schatten classes
,” J. London Math. Soc.
s2-37
, 148
–157
(1988
).18.
Deya
, A.
and Nourdin
, I.
, “Convergence of Wigner integrals to the Tetilla law
,” Latin Am. J. Probab. Math. Stat.
9
, 101
–127
(2012
).19.
Fuchs
, C. A.
and van De Graaf
, J.
, “Cryptographic distinguishability measures for quantum-mechanical states
,” IEEE Trans. Inf. Theory
45
(4
), 1216
–1227
(1999
).20.
Giraud
, O.
, “Distribution of bipartite entanglement for random pure states
,” J. Phys. A: Math. Theor.
40
, 2793
(2007
).21.
22.
Hiai
, F.
and Petz
, D.
, The Semicircle Law, Free Random Variables, and Entropy
(AMS
, 2000
).23.
Holevo
, A. S.
, “An analogue of statistical decision theory and noncommutative probability theory
,” Tr. Mosk. Mat. O-va.
26
, 133
–149
(1972
).24.
Horn
, R.
and Johnson
, C.
, Topics in Matrix Analysis
(Cambridge University Press
, 1991
).25.
Kitaev
, A. Y.
, “Quantum computations: Algorithms and error correction
,” Russ. Math. Surv.
52
, 1191
–1249
(1997
).26.
Jamiołkowski
, A.
, “Linear transformations which preserve trace and positive semidefiniteness of operators
,” Rep. Math. Phys.
3
, 275
–278
(1972
).27.
Jenčová
, A.
and Plávala
, M.
, “Conditions for optimal input states for discrimination of quantum channels
,” J. Math. Phys.
57
, 122203
(2016
).28.
Johnston
, N.
, Kribs
, D.
, and Paulsen
, V.
, “Computing stabilized norms for quantum operations via the theory of completely bounded maps
,” Quantum Inf. Comput.
9
, 0016
–0035
(2009
).29.
Johnston
, N.
, QETLAB: A MATLAB toolbox for quantum entanglement, version 0.9. http://www.qetlab.com, 12 January 2016
.30.
Kliesch
, M.
, Kueng
, R.
, Eisert
, J.
, and Gross
, D.
, “Improving compressed sensing with the diamond norm
,” IEEE Trans. Inf. Theory
62
, 7445
–7463
(2016
).31.
Male
, C.
, “The norm of polynomials in large random and deterministic matrices
,” Probab. Theory Relat. Fields
154
, 477
–532
(2012
).32.
Michel
, U.
, Kliesch
, M.
, Kueng
, R.
, and Gross
, D.
, “Note on the saturation of the norm inequalities between diamond and nuclear norm
,” preprint arXiv:1612.07931.33.
Nica
, A.
and Speicher
, R.
, Lectures on the Combinatorics of Free Probability
(Cambridge University Press
, 2006
).34.
Nica
, A.
and Speicher
, R.
, “Commutators of free random variables
,” Duke Math. J.
92
, 553
–592
(1998
).35.
Paulsen
, V.
, Completely Bounded Maps and Operator Algebras
(Cambridge University Press
, 2002
).36.
Puchała
, Z.
, Jenčová
, A.
, Sedlák
, M.
, and Ziman
, M.
, “Exploring boundaries of quantum convex structures: Special role of unitary processes
,” Phys. Rev. A
92
(1
), 012304
(2015
).37.
Puchała
, Z.
, Pawela
, Ł.
, and Życzkowski
, K.
, “Distinguishability of generic quantum states
,” Phys. Rev. A
93
, 062112
(2016
).38.
Rains
, E. M.
, “Combinatorial properties of Brownian motion on the compact classical groups
,” J. Theor. Probab.
10
, 659
–679
(1997
).39.
Samuelson
, P. A.
, “How deviant can you be?
,” J. Am. Stat. Assoc.
63
, 1522
–1525
(1968
).40.
Sommers
, H.-J.
and Życzkowski
, K.
, “Statistical properties of random density matrices
,” J. Phys. A: Math. Gen.
37
, 8457
(2004
).41.
Stinespring
, W. F.
, “Positive functions on C*-algebras
,” Proc. Am. Math. Soc.
6
, 211
–216
(1955
).42.
Szarek
, S.
, Werner
, E.
, and Życzkowski
, K.
, “Geometry of sets of quantum maps: A generic positive map acting on a high-dimensional system is not completely positive
,” J. Math. Phys.
49
, 032113
(2008
).43.
Timoney
, R. M.
, “Computing the norms of elementary operators
,” Ill. J. Math.
47
, 1207
–1226
(2003
).44.
Watrous
, J.
, Theory of Quantum Information
(Cambridge University Press
, in press), book draft available at https://cs.uwaterloo.ca/watrous/TQI/.45.
Watrous
, J.
, “Simpler semidefinite programs for completely bounded norms
,” Chicago J. Theor. Comput. Sci.
2013
, 8
.46.
Wolkowicz
, H.
and Styan
, G. P. H.
, “Bounds for eigenvalues using traces
,” Linear Algebra Appl.
29
, 471
–506
(1980
).47.
Weingarten
, D.
, “Asymptotic behavior of group integrals in the limit of infinite rank
,” J. Math. Phys.
19
, 999
–1001
(1978
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.