In this work, we analyze properties of generic quantum channels in the case of large system size. We use random matrix theory and free probability to show that the distance between two independent random channels converges to a constant value as the dimension of the system grows larger. As a measure of the distance we use the diamond norm. In the case of a flat Hilbert-Schmidt distribution on quantum channels, we obtain that the distance converges to 12+2π, giving also an estimate for the maximum success probability for distinguishing the channels. We also consider the problem of distinguishing two random unitary rotations.

1.
Aubrun
,
G.
and
Szarek
,
S.
,
Alice and Bob Meet Banach
(
American Mathematical Society
,
2017
).
2.
Bai
,
Z.
and
Silverstein
,
J. W.
,
Spectral Analysis of Large Dimensional Random Matrices
, Springer Series in Statistics (
Springer
,
2010
).
3.
Bai
,
Z. D.
and
Yin
,
Y. Q.
, “
Limit of the smallest eigenvalue of large dimensional covariance matrix
,”
Ann. Probab.
21
,
1275
1294
(
1993
).
4.
Ben Arous
,
G.
and
Bourgade
,
P.
, “
Extreme gaps between eigenvalues of random matrices
,”
Ann. Probab.
41
,
2648
2681
(
2013
).
5.
Bercovici
,
H.
and
Voiculescu
,
D.
, “
Regularity questions for free convolution
,”
Oper. Theory
104
,
37
47
(
1998
).
6.
Bhatia
,
R.
,
Matrix Analysis
, Graduate Texts in Mathematics Vol. 169 (
Springer-Verlag
,
New York
,
1997
).
7.
Bhatia
,
R.
, “
Matrix factorizations and their perturbations
,”
Linear Algebra Appl.
197-198
,
245
276
(
1994
).
8.
Biane
,
P.
, “
Free Brownian motion, free stochastic calculus and random matrices
,” in
Free Probability Theory
, Volume 12 of Fields Institute Communications (
American Mathematical Society
,
Providence, Waterloo, ON
,
1995
, 1997), pp.
1
19
.
9.
Biane
,
P.
, “
Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems
,”
J. Funct. Anal.
144
,
232
286
(
1997
).
10.
Bruzda
,
W.
,
Cappellini
,
V.
,
Sommers
,
H.-J.
, and
Życzkowski
,
K.
, “
Random quantum operations
,”
Phys. Lett. A
373
,
320
324
(
2009
).
11.
Choi
,
M.-D.
, “
Completely positive linear maps on complex matrices
,”
Linear Algebra Appl.
10
,
285
(
1975
).
12.
Collins
,
B.
,
Dahlqvist
,
A.
, and
Kemp
,
T.
, “
Strong convergence of unitary Brownian motion
,” preprint arXiv:1502.06186.
13.
Collins
,
B.
and
Nechita
,
I.
, “
Random quantum channels. I: Graphical calculus and the Bell state phenomenon
,”
Commun. Math. Phys.
297
,
345
370
(
2010
).
14.
Collins
,
B.
and
Nechita
,
I.
, “
Random matrix techniques in quantum information theory
,”
J. Math. Phys.
57
,
015215
(
2016
).
15.
Collins
,
B.
,
Nechita
,
I.
, and
Ye
,
D.
, “
The absolute positive partial transpose property for random induced states
,”
Random Matrices: Theory Appl.
01
,
1250002
(
2012
).
16.
Collins
,
B.
and
Śniady
,
P.
, “
Integration with respect to the Haar measure on unitary, orthogonal and symplectic group
,”
Commun. Math. Phys.
264
,
773
795
(
2006
).
17.
Davies
,
E. B.
, “
Lipschitz continuity of operators in the Schatten classes
,”
J. London Math. Soc.
s2-37
,
148
157
(
1988
).
18.
Deya
,
A.
and
Nourdin
,
I.
, “
Convergence of Wigner integrals to the Tetilla law
,”
Latin Am. J. Probab. Math. Stat.
9
,
101
127
(
2012
).
19.
Fuchs
,
C. A.
and
van De Graaf
,
J.
, “
Cryptographic distinguishability measures for quantum-mechanical states
,”
IEEE Trans. Inf. Theory
45
(
4
),
1216
1227
(
1999
).
20.
Giraud
,
O.
, “
Distribution of bipartite entanglement for random pure states
,”
J. Phys. A: Math. Theor.
40
,
2793
(
2007
).
21.
Helstrom
,
C. W.
,
Quantum Detection and Estimation Theory
(
Academic Press
,
1976
).
22.
Hiai
,
F.
and
Petz
,
D.
,
The Semicircle Law, Free Random Variables, and Entropy
(
AMS
,
2000
).
23.
Holevo
,
A. S.
, “
An analogue of statistical decision theory and noncommutative probability theory
,”
Tr. Mosk. Mat. O-va.
26
,
133
149
(
1972
).
24.
Horn
,
R.
and
Johnson
,
C.
,
Topics in Matrix Analysis
(
Cambridge University Press
,
1991
).
25.
Kitaev
,
A. Y.
, “
Quantum computations: Algorithms and error correction
,”
Russ. Math. Surv.
52
,
1191
1249
(
1997
).
26.
Jamiołkowski
,
A.
, “
Linear transformations which preserve trace and positive semidefiniteness of operators
,”
Rep. Math. Phys.
3
,
275
278
(
1972
).
27.
Jenčová
,
A.
and
Plávala
,
M.
, “
Conditions for optimal input states for discrimination of quantum channels
,”
J. Math. Phys.
57
,
122203
(
2016
).
28.
Johnston
,
N.
,
Kribs
,
D.
, and
Paulsen
,
V.
, “
Computing stabilized norms for quantum operations via the theory of completely bounded maps
,”
Quantum Inf. Comput.
9
,
0016
0035
(
2009
).
29.
Johnston
,
N.
, QETLAB: A MATLAB toolbox for quantum entanglement, version 0.9. http://www.qetlab.com,
12 January 2016
.
30.
Kliesch
,
M.
,
Kueng
,
R.
,
Eisert
,
J.
, and
Gross
,
D.
, “
Improving compressed sensing with the diamond norm
,”
IEEE Trans. Inf. Theory
62
,
7445
7463
(
2016
).
31.
Male
,
C.
, “
The norm of polynomials in large random and deterministic matrices
,”
Probab. Theory Relat. Fields
154
,
477
532
(
2012
).
32.
Michel
,
U.
,
Kliesch
,
M.
,
Kueng
,
R.
, and
Gross
,
D.
, “
Note on the saturation of the norm inequalities between diamond and nuclear norm
,” preprint arXiv:1612.07931.
33.
Nica
,
A.
and
Speicher
,
R.
,
Lectures on the Combinatorics of Free Probability
(
Cambridge University Press
,
2006
).
34.
Nica
,
A.
and
Speicher
,
R.
, “
Commutators of free random variables
,”
Duke Math. J.
92
,
553
592
(
1998
).
35.
Paulsen
,
V.
,
Completely Bounded Maps and Operator Algebras
(
Cambridge University Press
,
2002
).
36.
Puchała
,
Z.
,
Jenčová
,
A.
,
Sedlák
,
M.
, and
Ziman
,
M.
, “
Exploring boundaries of quantum convex structures: Special role of unitary processes
,”
Phys. Rev. A
92
(
1
),
012304
(
2015
).
37.
Puchała
,
Z.
,
Pawela
,
Ł.
, and
Życzkowski
,
K.
, “
Distinguishability of generic quantum states
,”
Phys. Rev. A
93
,
062112
(
2016
).
38.
Rains
,
E. M.
, “
Combinatorial properties of Brownian motion on the compact classical groups
,”
J. Theor. Probab.
10
,
659
679
(
1997
).
39.
Samuelson
,
P. A.
, “
How deviant can you be?
,”
J. Am. Stat. Assoc.
63
,
1522
1525
(
1968
).
40.
Sommers
,
H.-J.
and
Życzkowski
,
K.
, “
Statistical properties of random density matrices
,”
J. Phys. A: Math. Gen.
37
,
8457
(
2004
).
41.
Stinespring
,
W. F.
, “
Positive functions on C*-algebras
,”
Proc. Am. Math. Soc.
6
,
211
216
(
1955
).
42.
Szarek
,
S.
,
Werner
,
E.
, and
Życzkowski
,
K.
, “
Geometry of sets of quantum maps: A generic positive map acting on a high-dimensional system is not completely positive
,”
J. Math. Phys.
49
,
032113
(
2008
).
43.
Timoney
,
R. M.
, “
Computing the norms of elementary operators
,”
Ill. J. Math.
47
,
1207
1226
(
2003
).
44.
Watrous
,
J.
,
Theory of Quantum Information
(
Cambridge University Press
, in press), book draft available at https://cs.uwaterloo.ca/watrous/TQI/.
45.
Watrous
,
J.
, “
Simpler semidefinite programs for completely bounded norms
,”
Chicago J. Theor. Comput. Sci.
2013
,
8
.
46.
Wolkowicz
,
H.
and
Styan
,
G. P. H.
, “
Bounds for eigenvalues using traces
,”
Linear Algebra Appl.
29
,
471
506
(
1980
).
47.
Weingarten
,
D.
, “
Asymptotic behavior of group integrals in the limit of infinite rank
,”
J. Math. Phys.
19
,
999
1001
(
1978
).

Supplementary Material

You do not currently have access to this content.