We address in this paper the notion of relative phase shift for mixed quantum systems. We study the Pancharatnam–Sjöqvist phase shift φ(t)=ArgTr(U^tρ^) for metaplectic isotopies acting on Gaussian mixed states. We complete and generalize the previous results obtained by one of us, while giving rigorous proofs. The key actor in this study is the theory of the Conley–Zehnder index which is an intersection index related to the Maslov index.

1.
Aharonov
,
Y.
and
Bohm
,
D.
, “
Significance of electromagnetic potentials in quantum theory
,”
Phys. Rev.
115
,
485
491
(
1959
).
2.
Aharonov
,
Y.
and
Anandan
,
J.
, “
Phase change during a cyclic quantum evolution
,”
Phys. Rev. Let.
58
,
1593
1596
(
1987
).
3.
Arnol’d
,
V. I.
,
Mathematical Methods of Classical Mechanics
, Graduate Texts in Mathematics, 2nd ed. (
Springer-Verlag
,
1989
).
4.
Banyaga
,
A.
, “
Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique
,”
Commun. Math. Helv.
53
,
174
227
(
1978
).
5.
Berry
,
M. V.
, “
Quantal phase factors accompanying adiabatic changes
,”
Proc. R. Soc. A
392
,
45
57
(
1984
).
6.
Brislawn
,
C.
, “
Kernels of trace class operators
,”
Proc. Am. Math. Soc.
104
(
4
),
1181
1190
(
1988
).
7.
Burdet
,
G.
,
Perrin
,
M.
, and
Perroud
,
M.
, “
Generating functions for the affine symplectic group
,”
Commun. Math. Phys.
58
(
3
),
241
254
(
1978
).
8.
Cappell
,
S. E.
,
Lee
,
R.
, and
Miller
,
E. Y.
, “
On the Maslov index
,”
Commun. Pure Appl. Math.
47
(
2
),
121
186
(
1994
).
9.
Combescure
,
M.
and
Robert
,
D.
, “
Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow
,”
Asymptotic Anal.
14
(
4
),
377
404
(
1997
).
10.
Conley
,
C.
and
Zehnder
,
E.
, “
Morse-type index theory for flows and periodic solutions of Hamiltonian equations
,”
Commun. Pure Appl. Math.
37
,
207
253
(
1984
).
11.
Cordero
,
E.
,
De Mari
,
F.
,
Nowak
,
K.
, and
Tabacco
,
A.
, “
Reproducing groups for the metaplectic representation
,” in
Pseudo-Differential Operators and Related Topics
(
Springer
,
2006
), Vol. 12, pp.
227
244
.
12.
de Gosson
,
M.
, “
Maslov indices on the metaplectic group Mp(n)
,”
Ann. Inst. Fourier
40
(
3
),
537
555
(
1990
).
13.
de Gosson
,
M.
, “
On the Weyl representation of metaplectic operators
,”
Lett. Math. Phys.
72
(
2
),
129
142
(
2005
).
14.
de Gosson
,
M.
,
Symplectic Geometry and Quantum Mechanics
(
Springer Science & Business Media
,
2006
), Vol. 166.
15.
de Gosson
,
M.
, “
Metaplectic representation, Conley–Zehnder index, and Weyl calculus on phase space
,”
Rev. Math. Phys.
19
(
10
),
1149
1188
(
2007
).
16.
de Gosson
,
M.
, “
On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths
,”
J. Math. Pures Appl.
91
,
598
(
2009
).
17.
de Gosson
,
M.
and
Luef
,
F.
, “
Symplectic capacities and the geometry of uncertainty: The irruption of symplectic topology in classical and quantum mechanics
,”
Phys. Rep.
484
,
131
179
(
2009
).
18.
de Gosson
,
M.
,
Symplectic Methods in Harmonic Analysis and in Mathematical Physics
(
Springer Science & Business Media
,
2011
), Vol. 7.
19.
de Gosson
,
M.
, “
Paths of canonical transformations and their quantization
,”
Rev. Math. Phys.
27
(
6
),
1530003
(
2015
).
20.
de Gosson
,
M.
,
The Wigner Transform
, Series: Advanced Texts in Mathematics (
World Scientific
,
2017
).
21.
Deng
,
Y.
and
Xia
,
Z.
, “
Conley–Zehnder index and bifurcation of fixed points of Hamiltonian maps
,”
Ergodic Theory Dyn. Syst.
1
22
(
2017
).
22.
Dittrich
,
W.
and
Reuter
,
M.
,
Classical and Quantum Dynamics
, 2nd Corrected and Enlarged Edition (
Springer
,
1996
).
23.
Du
,
J.
and
Wong
,
M. W.
, “
A trace formula for Weyl transforms
,”
Approx. Theory Appl.
16
(
1
),
41
45
(
1999
).
24.
Dutta
,
B.
,
Mukunda
,
N.
, and
Simon
,
R.
, “
The real symplectic groups in quantum mechanics and optics
,”
Pramana
45
(
6
),
471
497
(
1995
).
25.
Estrada
,
R.
,
Gracia-Bondia
,
J. M.
, and
Várilly
,
J.
, “
On asymptotic expansions of twisted products
,”
J. Math. Phys.
30
(
12
),
2789
2796
(
1989
).
26.
Faulhuber
,
M.
,
de Gosson
,
M. A.
, and
Rottensteiner
,
D.
, “
Gaussian distributions and phase space Weyl–Heisenberg frames
,” e-print arXiv:1708.01551v1 [math-ph].
27.
Folland
,
G. B.
,
Harmonic Analysis in Phase Space
, Annals of Mathematics studies (
Princeton University Press
,
Princeton, NJ
,
1989
).
28.
Grossmann
,
A.
, “
Parity operators and quantization of δ-functions
,”
Commun. Math. Phys.
48
,
191
193
(
1976
).
29.
Hannay
,
J. H.
, “
Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian
,”
J. Phys. A: Math. Gen.
18
,
221
230
(
1985
).
30.
Hofer
,
H.
,
Wysocki
,
K.
, and
Zehnder
,
E.
, “
Properties of pseudoholomorphic curves in symplectizations II: Embedding controls and algebraic invariants
,”
Geom. Funct. Anal.
5
(
2
),
270
328
(
1995
).
31.
Leray
,
J.
,
Lagrangian Analysis and Quantum Mechanics: A Mathematical Structure Related to Asymptotic Expansions and the Maslov Index
(
MIT Press
,
Cambridge, Massachusetts
,
1981
), translated from Analyse Lagrangienne RCP 25, Strasbourg Collège de France (1976–1977).
32.
Littlejohn
,
R. G.
, “
The semiclassical evolution of wave packets
,”
Phys. Rep.
138
(
4-5
),
193
291
(
1986
).
33.
Mehlig
,
B.
and
Wilkinson
,
M.
, “
Semiclassical trace formulae using coherent states
,”
Ann. Phys.
10
,
541
559
(
2001
).
34.
Mehta
,
C. L.
, “
Diagonal coherent-state representation of quantum operators
,”
Phys. Rev. Lett.
18
,
752
754
(
1967
).
35.
Meinrenken
,
E.
, “
Semiclassical principal symbols and Gutzwiller’s trace formula
,”
Rep. Math. Phys.
31
,
279
295
(
1992
).
36.
Meinrenken
,
E.
, “
Trace formulas and the Conley–Zehnder index
,”
J. Geom. Phys.
13
,
1
15
(
1994
).
37.
Mukunda
,
N.
and
Simon
,
R.
, “
Quantum kinematic approach to the geometric phase
,”
Ann. Phys.
228
,
205
268
(
1993
).
38.
Nicacio
,
F.
,
Maia
,
R. N. P.
,
Vallejos
,
R. O.
and
Toscano
,
F.
, “
Phase space structure of generalized Gaussian cat states
,”
Phys. Lett. A
374
,
4385
4392
(
2010
).
39.
Nicacio
,
F.
,
Valdés-Hernández
,
A.
,
Majtey
,
A. P.
, and
Toscano
,
F.
, “
Unified framework to determine Gaussian states in continuous-variable systems
,”
Phys. Rev. A
96
,
042341
(
2017
); e-print arXiv:1707.01966 [quant-ph].
40.
Pancharatnam
,
S.
, “
Generalized theory of interference, and its applications
,”
Proc. Indian Acad. Sci., Sect. A
44
(
5
),
247
(
1956
).
41.
Royer
,
A.
, “
Wigner functions as the expectation value of a parity operator
,”
Phys. Rev. A
15
,
449
450
(
1977
).
42.
Shubin
,
M. A.
,
Pseudodifferential Operators and Spectral Theory
(
Springer-Verlag
,
1987
) [original Russian edition in Nauka, Moskva, 1978].
43.
Simon
,
B.
,
Trace Ideals and Their Applications
(
Cambridge U. P.
,
Cambridge
,
1979
).
44.
Sjöqvist
,
E.
,
Pati
,
A. K.
,
Ekert
,
A.
,
Anandan
,
J. S.
,
Ericsson
,
M.
,
Oi
,
D. K. L.
, and
Vedral
,
V.
, “
Geometric phases for mixed states in interferometry
,”
Phys. Rev. Lett.
85
(
14
),
2845
2849
(
2000
).
45.
Sun
,
S.
, “
Gutzwiller’s semiclassical trace formula and Maslov-type index for symplectic paths
,”
J. Fixed Point Theory Appl.
19
,
299
343
(
2017
).
46.
Wang
,
D.
, “
Some aspects of Hamiltonian systems and symplectic algorithms
,”
Phys. D
73
,
1
16
(
1994
).
You do not currently have access to this content.