We show that an atom of atomic number Z described by the time-dependent Thomas-Fermi equation or the Vlasov equation cannot bind more than 4Z electrons.
REFERENCES
1.
Benguria
, R.
, Hoops
, S.
, and Siedentop
, H.
, “Bounds on the excess charge and the ionization energy for the Hellmann-Weizsäcker model
,” Ann. Inst. Henri Poincare
57
(1
), 47
–65
(1992
).2.
Benguria
, R.
and Lieb
, E. H.
, “The most negative ion in the Thomas-Fermi-von Weizsäcker theory of atoms and molecules
,” J. Phys. B: At. Mol. Phys.
18
, 1045
–1059
(1985
).3.
Bloch
, F.
, “Bremsvermögen von Atomen mit mehreren Elektronen
,” Z. Phys.
81
(5-6
), 363
–376
(1933
).4.
Chen
, L.
and Siedentop
, H.
, “Blow-up of solutions to the Patlak-Keller-Segel equation in dimension ν ≥ 2
,” Appl. Math. Lett.
74
, 102
–107
(2017
).5.
Frank
, R. L.
, Nam
, P. T.
, and van den Bosch
, H.
, “The maximal excess charge in Müller density-matrix-functional theory
,” preprint arXiv:1608.05625 (2016
).6.
Frank
, R. L.
, Nam
, P. T.
, and Bosch
, H. V. D.
, “The ionization conjecture in Thomas-Fermi-Dirac-von Weizsäcker theory
,” Commun. Pure Appl. Math.
71
(3
), 577
–614
(2018
).7.
Gombás
, P.
, Die Statistische Theorie des Atoms und ihre Anwendungen
, 1st ed. (Springer-Verlag
, Wien
, 1949
).8.
Hill
, R. N.
, “Proof that the H− ion has only one bound state. Details and extension to finite nuclear mass
,” J. Math. Phys.
18
(12
), 2316
–2330
(1977
).9.
Hill
, R. N.
, “Proof that the H− ion has only one bound state
,” Phys. Rev. Lett.
38
, 643
–646
(1977
).10.
Hill
, R. N.
, “Proof that the H−-ion has only one bound state: A review, a new result, and some related unsolved problems
,” in Mathematical Problems in Theoretical Physics
(Springer
, 1980
), pp. 52
–56
.11.
Kehle
, C.
, “The maximal excess charge for a family of density-matrix-functional theories including Hartree-Fock and Müller theories
,” J. Math. Phys.
58
(1
), 011901
(2017
).12.
Lenzmann
, E.
and Lewin
, M.
, “Dynamical ionization bounds for atoms
,” Anal. PDE
6
(5
), 1183
–1211
(2013
).13.
Lieb
, E. H.
, “Bound on the maximum negative ionization of atoms and molecules
,” Phys. Rev. A
29
(6
), 3018
–3028
(1984
).14.
Lieb
, E. H.
, Sigal
, I. M.
, Simon
, B.
, and Thirring
, W.
, “Asymptotic neutrality of large Z atoms
,” Phys. Rev. Lett.
52
, 994
(1984
).15.
Lieb
, E. H.
, Sigal
, I. M.
, Simon
, B.
, and Thirring
, W.
, “Asymptotic neutrality of large Z ions
,” Commun. Math. Phys.
116
, 635
–644
(1988
).16.
Lieb
, E. H.
and Simon
, B.
, “The Thomas-Fermi theory of atoms, molecules and solids
,” Adv. Math.
23
(1
), 22
–116
(1977
).17.
18.
Massey
, H. S. W.
, “Negative ions
,” Adv. At. Mol. Phys.
15
, 1
–36
(1979
).19.
Nam
, P. T.
, “New bounds on the maximum ionization of atoms
,” Commun. Math. Phys.
312
(2
), 427
–445
(2012
).20.
Narnhofer
, H.
and Sewell
, G. L.
, “Vlasov hydrodynamics of a quantum mechanical model
,” Commun. Math. Phys.
79
(1
), 9
–24
(1981
).21.
Perry
, P. A.
, in Scattering Theory by the Enss Method
, edited by Simon
, B.
(Harwood Academic Publishers
, Chur
, 1983
).22.
Porta
, M.
, Rademacher
, S.
, Saffirio
, C.
, and Schlein
, B.
, “Mean field evolution of fermions with Coulomb interaction
,” J. Stat. Phys.
166
(6
), 1345
–1364
(2017
).23.
Ruskai
, M. B.
, “Absence of discrete spectrum in highly negative ions
,” Commun. Math. Phys.
82
, 457
–469
(1981
).24.
Ruskai
, M. B.
, “Absence of discrete spectrum in highly negative ions II. Extension to fermions
,” Commun. Math. Phys.
85
, 325
–327
(1982
).25.
Sigal
, I. M.
, “Geometric methods in the quantum many-body problem. Nonexistence of very negative ions
,” Commun. Math. Phys.
85
, 309
–324
(1982
).26.
Solovej
, J. P.
, “Proof of the ionization conjecture in a reduced Hartree-Fock model
,” Invent. Math.
104
(2
), 291
–311
(1991
).27.
Solovej
, J. P.
, “The ionization conjecture in Hartree-Fock theory
,” Ann. Math.
158
(2
), 509
–576
(2003
).28.
Sucher
, J.
, “Foundations of the relativistic theory of many-electron atoms
,” Phys. Rev. A
22
(2
), 348
–362
(1980
).29.
Teller
, E.
, “On the stability of molecules in the Thomas-Fermi theory
,” Rev. Mod. Phys.
34
(4
), 627
–631
(1962
).30.
Vlasov
, A.
, “The vibrational properties of an electron gas [in Russian]
,” Zh. Eksper. Teoret. Fis.
8
, 291
–318
(1938
).31.
Vlasov
, A. A.
, “The vibrational properties of an electron gas
,” Sov. Phys. Usp.
10
(6
), 721
–733
(1968
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.