We study standard and nonlocal nonlinear Schrödinger (NLS) equations obtained from the coupled NLS system of equations (Ablowitz-Kaup-Newell-Segur (AKNS) equations) by using standard and nonlocal reductions, respectively. By using the Hirota bilinear method, we first find soliton solutions of the coupled NLS system of equations; then using the reduction formulas, we find the soliton solutions of the standard and nonlocal NLS equations. We give examples for particular values of the parameters and plot the function |q(t, x)|2 for the standard and nonlocal NLS equations.

1.
M. J.
Ablowitz
,
D. J.
Kaup
,
A. C.
Newell
, and
H.
Segur
, “
Method for solving the Sine-Gordon equation
,”
Phys. Rev. Lett.
30
,
1262
1264
(
1973
).
2.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear Schrödinger equation
,”
Phys. Rev. Lett.
110
,
064105
(
2013
).
3.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation
,”
Nonlinearity
29
,
915
946
(
2016
).
4.
M. J.
Ablowitz
and
Z. H.
Musslimani
, “
Integrable nonlocal nonlinear equations
,”
Stud. Appl. Math.
139
(
1
),
7
59
(
2016
).
5.
A. S.
Fokas
, “
Integrable multidimensional versions of the nonlocal Schrödinger equation
,”
Nonlinearity
29
,
319
324
(
2016
).
6.
L. Y.
Ma
,
S. F.
Shen
, and
Z. N.
Zhu
, “
Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation
,”
J. Math. Phys.
58
,
103501
(
2017
).
7.
K.
Sakkaravarthi
and
T.
Kanna
, “
Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities
,”
J. Math. Phys.
54
,
013701
(
2013
).
8.
V. S.
Gerdjikov
and
A.
Saxena
, “
Complete integrability of nonlocal nonlinear Schrödinger equation
,”
J. Math. Phys.
58
(
1
),
013502
(
2017
); e-print arXiv:1510.00480 [nlin.SI].
9.
D.
Sinha
and
P. K.
Ghosh
, “
Integrable nonlocal vector nonlinear Schrödinger equation with self-induced parity-time symmetric potential
,”
Phys. Lett. A
381
,
124
128
(
2017
).
10.
V. S.
Gerdjikov
,
D. G.
Grahovski
, and
R. I.
Ivanov
, “
On integrable wave interactions and Lax pairs on symmetric spaces
,”
Wave Motion
71
,
53
70
(
2017
); e-print arXiv:1607.06940 [nlin.SI].
11.
V. S.
Gerdjikov
,
D. G.
Grahovski
, and
R. I.
Ivanov
, “
On the N-wave equations with PT symmetry
,”
Theor. Math. Phys.
188
(
3
),
1305
1321
(
2016
).
12.
V. S.
Gerdjikov
, “
On nonlocal models of Kulish-Sklyanin type and generalized Fourier transforms
,”
Stud. Comput. Intell.
681
,
37
52
(
2017
); e-print arXiv:1703.03705 [nlin.SI].
13.
A.
Khare
and
A.
Saxena
, “
Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations
,”
J. Math. Phys.
56
,
032104
(
2015
).
14.
M.
Li
and
T.
Xu
, “
Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential
,”
Phys. Rev. E
91
,
033202
(
2015
).
15.
X.
Huang
and
L.
King
, “
Soliton solutions for the nonlocal nonlinear Schrödinger equation
,”
Eur. Phys. J. Plus
131
,
148
(
2016
).
16.
X. Y.
Wen
,
Z.
Yan
, and
Y.
Yang
, “
Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential
,”
Chaos
26
,
063123
(
2015
).
17.
M.
Gürses
, “
Nonlocal Fordy-Kulish equations on symmetric spaces
,”
Phys. Lett. A
381
,
1791
1794
(
2017
); e-print arXiv:1702.03731 [nlin.SI].
18.
M.
Gürses
, “
Nonlocal super integrable equations
,” e-print arXiv:1704.01273 [nlin.SI].
19.
S.
Stalin
,
M.
Senthilvelan
, and
M.
Lakshmanan
, “
Nonstandard bilinearization of PT-invariant nonlocal Schrödinger equation: Bright soliton solutions
,”
Phys. Lett. A
381
(
30
),
2380
2385
(
2017
); e-print arXiv:1705.09128 [nlin.SI].
20.
J.
Hietarinta
, “
Searching for integrable PDEs by testing Hirota’s three-soliton condition
,” in
Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC’91
, edited by
S. M.
Watt
(
Association for Computing Machinery
,
1991
), pp.
295
300
.
21.
J.
Hietarinta
, “
Equations that pass Hirota’s three-soliton condition and other tests of integrability
,” in
Nonlinear Evolution Equations and Dynamical Systems
, edited by
S.
Carillo
and
O.
Ragnisco
(
Springer
,
1990
), pp.
46
50
.
22.
J.
Hietarinta
, “
Recent results from the search for bilinear equations having three-soliton solutions
,” in
Nonlinear Evolution Equations: Integrability and Spectral Methods
, edited by
A.
Degasperis
,
A. P.
Fordy
, and
M.
Lakshmanan
(
Manchester U.P.
,
1990
), pp.
307
317
.
23.
M.
Gürses
and
A.
Pekcan
, “
Nonlocal nonlinear Schrödinger equations and their soliton solutions
,” e-print arXiv:1707.07610v1 [nlin.SI].
You do not currently have access to this content.