We study standard and nonlocal nonlinear Schrödinger (NLS) equations obtained from the coupled NLS system of equations (Ablowitz-Kaup-Newell-Segur (AKNS) equations) by using standard and nonlocal reductions, respectively. By using the Hirota bilinear method, we first find soliton solutions of the coupled NLS system of equations; then using the reduction formulas, we find the soliton solutions of the standard and nonlocal NLS equations. We give examples for particular values of the parameters and plot the function |q(t, x)|2 for the standard and nonlocal NLS equations.
REFERENCES
1.
M. J.
Ablowitz
, D. J.
Kaup
, A. C.
Newell
, and H.
Segur
, “Method for solving the Sine-Gordon equation
,” Phys. Rev. Lett.
30
, 1262
–1264
(1973
).2.
M. J.
Ablowitz
and Z. H.
Musslimani
, “Integrable nonlocal nonlinear Schrödinger equation
,” Phys. Rev. Lett.
110
, 064105
(2013
).3.
M. J.
Ablowitz
and Z. H.
Musslimani
, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation
,” Nonlinearity
29
, 915
–946
(2016
).4.
M. J.
Ablowitz
and Z. H.
Musslimani
, “Integrable nonlocal nonlinear equations
,” Stud. Appl. Math.
139
(1
), 7
–59
(2016
).5.
A. S.
Fokas
, “Integrable multidimensional versions of the nonlocal Schrödinger equation
,” Nonlinearity
29
, 319
–324
(2016
).6.
L. Y.
Ma
, S. F.
Shen
, and Z. N.
Zhu
, “Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation
,” J. Math. Phys.
58
, 103501
(2017
).7.
K.
Sakkaravarthi
and T.
Kanna
, “Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities
,” J. Math. Phys.
54
, 013701
(2013
).8.
V. S.
Gerdjikov
and A.
Saxena
, “Complete integrability of nonlocal nonlinear Schrödinger equation
,” J. Math. Phys.
58
(1
), 013502
(2017
); e-print arXiv:1510.00480 [nlin.SI].9.
D.
Sinha
and P. K.
Ghosh
, “Integrable nonlocal vector nonlinear Schrödinger equation with self-induced parity-time symmetric potential
,” Phys. Lett. A
381
, 124
–128
(2017
).10.
V. S.
Gerdjikov
, D. G.
Grahovski
, and R. I.
Ivanov
, “On integrable wave interactions and Lax pairs on symmetric spaces
,” Wave Motion
71
, 53
–70
(2017
); e-print arXiv:1607.06940 [nlin.SI].11.
V. S.
Gerdjikov
, D. G.
Grahovski
, and R. I.
Ivanov
, “On the N-wave equations with PT symmetry
,” Theor. Math. Phys.
188
(3
), 1305
–1321
(2016
).12.
V. S.
Gerdjikov
, “On nonlocal models of Kulish-Sklyanin type and generalized Fourier transforms
,” Stud. Comput. Intell.
681
, 37
–52
(2017
); e-print arXiv:1703.03705 [nlin.SI].13.
A.
Khare
and A.
Saxena
, “Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations
,” J. Math. Phys.
56
, 032104
(2015
).14.
M.
Li
and T.
Xu
, “Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential
,” Phys. Rev. E
91
, 033202
(2015
).15.
X.
Huang
and L.
King
, “Soliton solutions for the nonlocal nonlinear Schrödinger equation
,” Eur. Phys. J. Plus
131
, 148
(2016
).16.
X. Y.
Wen
, Z.
Yan
, and Y.
Yang
, “Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential
,” Chaos
26
, 063123
(2015
).17.
M.
Gürses
, “Nonlocal Fordy-Kulish equations on symmetric spaces
,” Phys. Lett. A
381
, 1791
–1794
(2017
); e-print arXiv:1702.03731 [nlin.SI].18.
19.
S.
Stalin
, M.
Senthilvelan
, and M.
Lakshmanan
, “Nonstandard bilinearization of -invariant nonlocal Schrödinger equation: Bright soliton solutions
,” Phys. Lett. A
381
(30
), 2380
–2385
(2017
); e-print arXiv:1705.09128 [nlin.SI].20.
J.
Hietarinta
, “Searching for integrable PDEs by testing Hirota’s three-soliton condition
,” in Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC’91
, edited by S. M.
Watt
(Association for Computing Machinery
, 1991
), pp. 295
–300
.21.
J.
Hietarinta
, “Equations that pass Hirota’s three-soliton condition and other tests of integrability
,” in Nonlinear Evolution Equations and Dynamical Systems
, edited by S.
Carillo
and O.
Ragnisco
(Springer
, 1990
), pp. 46
–50
.22.
J.
Hietarinta
, “Recent results from the search for bilinear equations having three-soliton solutions
,” in Nonlinear Evolution Equations: Integrability and Spectral Methods
, edited by A.
Degasperis
, A. P.
Fordy
, and M.
Lakshmanan
(Manchester U.P.
, 1990
), pp. 307
–317
.23.
M.
Gürses
and A.
Pekcan
, “Nonlocal nonlinear Schrödinger equations and their soliton solutions
,” e-print arXiv:1707.07610v1 [nlin.SI].© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.