We show that the quantum state diffusion equation of Gisin and Percival, driven by complex Wiener noise, is equivalent up to a global stochastic phase to quantum trajectory models. With an appropriate feedback scheme, we set up an analog continuous measurement model which exactly simulates the Gisin-Percival quantum state diffusion.

1.
J.
Kupsch
, “
Open quantum systems
,” in
Decoherence and the Appearance of a Classical World in Quantum Theory
, edited by
E.
Joos
,
H. D.
Zeh
,
C.
Kiefer
,
D. J. W.
Giulini
,
J.
Kupsch
, and
I.-O.
Stamatescu
(
Springer-Verlag
,
Berlin, Heidelberg
,
2003
), Chap. 7.
2.
N.
Gisin
and
I. C.
Percival
,
J. Phys. A: Math. Gen.
25
,
5677
5691
(
1992
).
3.
H. M.
Wiseman
and
G. J.
Milburn
,
Phys. Rev. A
47
,
1652
1666
(
1993
).
4.
H. M.
Wiseman
and
G. J.
Milburn
,
Quantum Measurement and Control
(
Cambridge University Press
,
2009
).
5.
V. P.
Belavkin
,
Lect. Notes Control Inf. Sci.
121
,
245
265
(
1989
).
6.
V. P.
Belavkin
,
Radiotechnika Electronika
25
,
1445
1453
(
1980
);
V. P.
Belavkin
, “
Stochastic calculus of input-output processes and non-demolition filtering
,” in
Reviews of the Newest Achievements in Science and Technology
, Volume 36 of Current Problems of Mathematics, edited by
A. S.
Holevo
(
VINITI
,
1989
), pp.
29
67
;
V. P.
Belavkin
,
J. Multivar. Anal.
42
,
171
201
(
1992
).
7.
L. M.
Bouten
,
M. I.
Guţă
, and
H.
Maassen
,
J. Phys. A
37
,
3189
3209
(
2004
).
8.
L.
Bouten
and
R.
van Handel
, “
Quantum filtering: A reference probability approach
,” e-print arXiv:math-ph/0508006 (unpublished).
9.
L.
Bouten
,
R.
van Handel
, and
M. R.
James
,
SIAM J. Control Optim.
46
,
2199
2241
(
2007
).
10.
R. L.
Hudson
and
K. R.
Parthasarathy
,
Commun. Math. Phys.
93
,
301
(
1984
).
11.
C. W.
Gardiner
and
M. J.
Collett
,
Phys. Rev. A
31
,
3761
(
1985
).
12.
K. R.
Parthasarathy
,
An Introduction to Quantum Stochastic Calculus
(
Birkhauser
,
1992
).
13.
H. J.
Carmichael
,
An Open Systems Approach to Quantum Optics
, Lecture Notes in Physics (
Springer
,
1993
), Vol. 18.
14.
J.
Dalibard
,
Y.
Castin
, and
K.
Molmer
,
Phys. Rev. Lett.
68
,
580
583
(
1992
).
15.
C. W.
Gardiner
and
P.
Zoller
,
Quantum Noise
(
Springer
,
Berlin
,
2000
).
16.
G. C.
Ghirardi
,
P.
Pearle
, and
A.
Rimini
,
Phys. Rev. A
42
,
78
89
(
1990
).
17.
P.
Goetsch
and
R.
Graham
,
Phys. Rev. A
50
,
5242
5255
(
1994
).
18.
D.
Gatarek
and
N.
Gisin
,
J. Math. Phys.
32
(
8
),
2152
2157
(
1991
).
19.
S.
Bochner
and
K.
Chandrasekharan
,
Fourier Transforms
(
Princeton University Press
,
1949
).
20.
K. R.
Parthasarathy
and
A. R.
Usha Devi
, “
From quantum stochastic differential equations to Gisin-Percival state diffusion
,” preprint arXiv:1705.00520v1.
21.
C. M.
Mora
and
R.
Rebolledo
,
Ann. Appl. Probab.
18
(
2
),
591
619
(
2008
).
22.
F.
Fagnola
and
C.
Mora
,
Indian J. Pure Appl. Math.
46
(
4
),
399
414
(
2015
).
23.
F.
Fagnola
and
C. M.
Mora
,
ALEA, Lat. Am. J. Probab. Math. Stat.
10
(
1
),
191
223
(
2013
).
24.
J.
Gough
and
M. R.
James
,
Commun. Math. Phys.
287
,
1109
(
2009
).
25.
J.
Gough
and
M. R.
James
,
IEEE Trans. Autom. Control
54
,
2530
(
2009
).
26.
J. E.
Gough
, “
Non-Markovian quantum feedback networks II: Controlled flows
,”
J. Math. Phys.
58
,
063517
(
2017
).
You do not currently have access to this content.