We extend the confluent version of the higher-order supersymmetry (SUSY) formalism to general linear differential equations of second order. Closed-form representations of transformation functions, their Wronskians, and of the general solutions to SUSY-transformed equations are derived. We use these results to construct formulas for resolving multiple integrals of special functions in terms of Wronskians.
REFERENCES
1.
F.
Cooper
, A.
Khare
, and U.
Sukhatme
, “Supersymmetry and quantum mechanics
,” Phys. Rep.
251
, 267
–388
(1995
).2.
A.
Schulze-Halberg
, “Wronskian representation for confluent supersymmetric transformation chains of arbitrary order
,” Eur. Phys. J. Plus
128
, 68
–85
(2013
).3.
A.
Contreras-Astorga
and A.
Schulze-Halberg
, “On integral and differential representations of Jordan chains and the confluent supersymmetry algorithm
,” J. Phys. A: Math. Theor.
48
, 315202
(2015
).4.
A.
Contreras-Astorga
, D. J.
Fernandez
, and J.
Negro
, “Solutions of the Dirac equation in a magnetic field and intertwining operators
,” Symmetry, Integrability Geom.: Methods Appl.
8
, 082
(2012
).5.
G.
Darboux
, “Sur une proposition relative aux équations linéaires
,” C. R. Acad. Sci. Paris
94
, 1456
–1459
(1882
).6.
J. M.
Sparenberg
and D.
Baye
, “Supersymmetric transformations of real potentials on the line
,” J. Phys. A: Math. Gen.
28
, 5079
(1995
).7.
V. G.
Bagrov
and B. F.
Samsonov
, “Darboux transformation of the Schrödinger equation
,” Phys. Part. Nucl.
28
, 374
–397
(1997
).8.
C.
Gu
, H.
Hu
, and Z.
Zhou
, Darboux Transformations in Integrable Systems
, Volume 26 of Mathematical Physics Studies (Springer
, Dordrecht, The Netherlands
, 2005
).9.
V. B.
Matveev
and M. A.
Salle
, Darboux Transformations and Solitons
(Springer
, Berlin
, 1991
).10.
A.
Schulze-Halberg
, E.
Pozdeeva
, and A.
Suzko
, “Explicit Darboux transformations of arbitrary order for generalized time-dependent Schrödinger equations
,” J. Phys. A: Math. Theor.
42
, 115211
(2009
).11.
A.
Schulze-Halberg
, “Arbitrary-order Jordan chains associated with quantum-mechanical Hamiltonians: Representations and integral formulas
,” J. Math. Phys.
57
, 023521
(2016
).12.
D.
Bermudez
, “Wronskian differential formula for k-confluent SUSY QM
,” Ann. Phys.
364
, 35
–52
(2016
).13.
D.
Bermudez
and D. J.
Fernandez C.
, “Factorization method and new potentials from the inverted oscillator
,” Ann. Phys.
333
, 290
–306
(2013
).14.
D.
Bermudez
, D. J.
Fernandez C.
, and N.
Fernandez-Garcia
, “Wronskian differential formula for confluent supersymmetric quantum mechanics
,” Phys. Lett. A
376
, 692
–696
(2012
).15.
D. J.
Fernandez
and V. S.
Morales-Salgado
, “Supersymmetric partners of the harmonic oscillator with an infinite potential barrier
,” J. Phys. A: Math. Theor.
47
, 035304
(2014
).16.
D. J.
Fernandez C.
, “Supersymmetric quantum mechanics
,” AIP Conf. Proc.
1287
, 3
–36
(2010
).17.
D. J.
Fernandez C.
and E.
Salinas-Hernandez
, “The confluent algorithm in second order supersymmetric quantum mechanics
,” J. Phys. A: Math. Gen.
36
, 2537
–2543
(2003
).18.
D. J.
Fernandez C.
and E.
Salinas-Hernandez
, “Wronskian formula for confluent second-order supersymmetric quantum mechanics
,” Phys. Lett. A
338
, 13
–18
(2005
).19.
D. J.
Fernandez C.
and E.
Salinas-Hernandez
, “Hyperconfluent third-order supersymmetric quantum mechanics
,” J. Phys. A: Math. Theor.
44
, 365302
(2011
).20.
L. U.
Ancarani
and G.
Gasaneo
, “Derivatives of any order of the confluent hypergeometric function 1F1(a, b, z) with respect to the parameter a or b
,” J. Math. Phys.
49
, 063508
(2008
).21.
B.
Mielnik
, L. M.
Nieto
, and O.
Rosas-Ortiz
, “The finite difference algorithm for higher order supersymmetry
,” Phys. Lett. A
269
, 70
–78
(2000
).22.
A.
Sinha
and P.
Roy
, “Pseudo supersymmetric partners for the generalized Swanson model
,” J. Phys. A: Math. Theor.
41
, 335306
(2008
).23.
B.
Midya
, B.
Roy
, and T.
Tanaka
, J. Phys. A: Math. Gen.
45
(20
), 205303
(2012
).24.
C.
Quesne
, “Point canonical transformation versus deformed shape invariance for position-dependent mass Schrodinger equations
,” Symmetry, Integrability Geom.: Methods Appl.
5
, 046
(2009
).25.
A.
Ganguly
and L. M.
Nieto
, “Shape-invariant quantum Hamiltonian with position-dependent effective mass through second-order supersymmetry
,” J. Phys. A: Math. Theor.
40
(26
), 7265
–7281
(2007
).26.
Y.
Qian-Kai
, L.
De-Min
, and M.
Guang-Wen
, “Quantum states of a trapped Dirac particle in a pseudoscalar potential
,” Int. J. Theor. Phys.
44
, 1621
–1627
(2005
).27.
N. M. R.
Peres
, “Scattering in one-dimensional heterostructures described by the Dirac equation
,” J. Phys.: Condens. Matter
21
, 095501
(2009
).28.
D.
Gomez-Ullate
, N.
Kamran
, and R.
Milson
, “An extended class of orthogonal polynomials defined by a Sturm-Liouville problem
,” J. Math. Anal. Appl.
359
, 352
–367
(2009
).29.
D.
Gomez-Ullate
, N.
Kamran
, and R.
Milson
, “An extension of Bochner’s problem: Exceptional invariant subspaces
,” J. Approximation Theory
162
, 987
–1006
(2010
).30.
S.
Odake
and R.
Sasaki
, “Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials
,” Phys. Lett. B
702
, 164
–170
(2011
).31.
C.
Quesne
, “Extending Romanovski polynomials in quantum mechanics
,” J. Math. Phys.
54
, 122103
(2013
).32.
C.
Quesne
, “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics
,” Symmetry, Integrability Geom.: Methods Appl.
5
, 084
(2009
).33.
H. C.
Rosu
, S. C.
Mancas
, and P.
Chen
, “One-parameter families of supersymmetric isospectral potentials from Riccati solutions in function composition form
,” Ann. Phys.
343
, 87
–102
(2014
).34.
M.
Abramowitz
and I.
Stegun
, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(Dover Publications
, New York
, 1964
).35.
See http://functions.wolfram.com/HypergeometricFunctions/HypergeometricU/13/01/01/0006/ for information on hypergeometric functions and their properties.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.