We extend the confluent version of the higher-order supersymmetry (SUSY) formalism to general linear differential equations of second order. Closed-form representations of transformation functions, their Wronskians, and of the general solutions to SUSY-transformed equations are derived. We use these results to construct formulas for resolving multiple integrals of special functions in terms of Wronskians.

1.
F.
Cooper
,
A.
Khare
, and
U.
Sukhatme
, “
Supersymmetry and quantum mechanics
,”
Phys. Rep.
251
,
267
388
(
1995
).
2.
A.
Schulze-Halberg
, “
Wronskian representation for confluent supersymmetric transformation chains of arbitrary order
,”
Eur. Phys. J. Plus
128
,
68
85
(
2013
).
3.
A.
Contreras-Astorga
and
A.
Schulze-Halberg
, “
On integral and differential representations of Jordan chains and the confluent supersymmetry algorithm
,”
J. Phys. A: Math. Theor.
48
,
315202
(
2015
).
4.
A.
Contreras-Astorga
,
D. J.
Fernandez
, and
J.
Negro
, “
Solutions of the Dirac equation in a magnetic field and intertwining operators
,”
Symmetry, Integrability Geom.: Methods Appl.
8
,
082
(
2012
).
5.
G.
Darboux
, “
Sur une proposition relative aux équations linéaires
,”
C. R. Acad. Sci. Paris
94
,
1456
1459
(
1882
).
6.
J. M.
Sparenberg
and
D.
Baye
, “
Supersymmetric transformations of real potentials on the line
,”
J. Phys. A: Math. Gen.
28
,
5079
(
1995
).
7.
V. G.
Bagrov
and
B. F.
Samsonov
, “
Darboux transformation of the Schrödinger equation
,”
Phys. Part. Nucl.
28
,
374
397
(
1997
).
8.
C.
Gu
,
H.
Hu
, and
Z.
Zhou
,
Darboux Transformations in Integrable Systems
, Volume 26 of Mathematical Physics Studies (
Springer
,
Dordrecht, The Netherlands
,
2005
).
9.
V. B.
Matveev
and
M. A.
Salle
,
Darboux Transformations and Solitons
(
Springer
,
Berlin
,
1991
).
10.
A.
Schulze-Halberg
,
E.
Pozdeeva
, and
A.
Suzko
, “
Explicit Darboux transformations of arbitrary order for generalized time-dependent Schrödinger equations
,”
J. Phys. A: Math. Theor.
42
,
115211
(
2009
).
11.
A.
Schulze-Halberg
, “
Arbitrary-order Jordan chains associated with quantum-mechanical Hamiltonians: Representations and integral formulas
,”
J. Math. Phys.
57
,
023521
(
2016
).
12.
D.
Bermudez
, “
Wronskian differential formula for k-confluent SUSY QM
,”
Ann. Phys.
364
,
35
52
(
2016
).
13.
D.
Bermudez
and
D. J.
Fernandez C.
, “
Factorization method and new potentials from the inverted oscillator
,”
Ann. Phys.
333
,
290
306
(
2013
).
14.
D.
Bermudez
,
D. J.
Fernandez C.
, and
N.
Fernandez-Garcia
, “
Wronskian differential formula for confluent supersymmetric quantum mechanics
,”
Phys. Lett. A
376
,
692
696
(
2012
).
15.
D. J.
Fernandez
and
V. S.
Morales-Salgado
, “
Supersymmetric partners of the harmonic oscillator with an infinite potential barrier
,”
J. Phys. A: Math. Theor.
47
,
035304
(
2014
).
16.
D. J.
Fernandez C.
, “
Supersymmetric quantum mechanics
,”
AIP Conf. Proc.
1287
,
3
36
(
2010
).
17.
D. J.
Fernandez C.
and
E.
Salinas-Hernandez
, “
The confluent algorithm in second order supersymmetric quantum mechanics
,”
J. Phys. A: Math. Gen.
36
,
2537
2543
(
2003
).
18.
D. J.
Fernandez C.
and
E.
Salinas-Hernandez
, “
Wronskian formula for confluent second-order supersymmetric quantum mechanics
,”
Phys. Lett. A
338
,
13
18
(
2005
).
19.
D. J.
Fernandez C.
and
E.
Salinas-Hernandez
, “
Hyperconfluent third-order supersymmetric quantum mechanics
,”
J. Phys. A: Math. Theor.
44
,
365302
(
2011
).
20.
L. U.
Ancarani
and
G.
Gasaneo
, “
Derivatives of any order of the confluent hypergeometric function 1F1(a, b, z) with respect to the parameter a or b
,”
J. Math. Phys.
49
,
063508
(
2008
).
21.
B.
Mielnik
,
L. M.
Nieto
, and
O.
Rosas-Ortiz
, “
The finite difference algorithm for higher order supersymmetry
,”
Phys. Lett. A
269
,
70
78
(
2000
).
22.
A.
Sinha
and
P.
Roy
, “
Pseudo supersymmetric partners for the generalized Swanson model
,”
J. Phys. A: Math. Theor.
41
,
335306
(
2008
).
23.
B.
Midya
,
B.
Roy
, and
T.
Tanaka
,
J. Phys. A: Math. Gen.
45
(
20
),
205303
(
2012
).
24.
C.
Quesne
, “
Point canonical transformation versus deformed shape invariance for position-dependent mass Schrodinger equations
,”
Symmetry, Integrability Geom.: Methods Appl.
5
,
046
(
2009
).
25.
A.
Ganguly
and
L. M.
Nieto
, “
Shape-invariant quantum Hamiltonian with position-dependent effective mass through second-order supersymmetry
,”
J. Phys. A: Math. Theor.
40
(
26
),
7265
7281
(
2007
).
26.
Y.
Qian-Kai
,
L.
De-Min
, and
M.
Guang-Wen
, “
Quantum states of a trapped Dirac particle in a pseudoscalar potential
,”
Int. J. Theor. Phys.
44
,
1621
1627
(
2005
).
27.
N. M. R.
Peres
, “
Scattering in one-dimensional heterostructures described by the Dirac equation
,”
J. Phys.: Condens. Matter
21
,
095501
(
2009
).
28.
D.
Gomez-Ullate
,
N.
Kamran
, and
R.
Milson
, “
An extended class of orthogonal polynomials defined by a Sturm-Liouville problem
,”
J. Math. Anal. Appl.
359
,
352
367
(
2009
).
29.
D.
Gomez-Ullate
,
N.
Kamran
, and
R.
Milson
, “
An extension of Bochner’s problem: Exceptional invariant subspaces
,”
J. Approximation Theory
162
,
987
1006
(
2010
).
30.
S.
Odake
and
R.
Sasaki
, “
Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials
,”
Phys. Lett. B
702
,
164
170
(
2011
).
31.
C.
Quesne
, “
Extending Romanovski polynomials in quantum mechanics
,”
J. Math. Phys.
54
,
122103
(
2013
).
32.
C.
Quesne
, “
Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics
,”
Symmetry, Integrability Geom.: Methods Appl.
5
,
084
(
2009
).
33.
H. C.
Rosu
,
S. C.
Mancas
, and
P.
Chen
, “
One-parameter families of supersymmetric isospectral potentials from Riccati solutions in function composition form
,”
Ann. Phys.
343
,
87
102
(
2014
).
34.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover Publications
,
New York
,
1964
).
35.
See http://functions.wolfram.com/HypergeometricFunctions/HypergeometricU/13/01/01/0006/ for information on hypergeometric functions and their properties.
You do not currently have access to this content.