Particle probe analysis of the Kehagias-Sfetsos black hole spacetime of Hořava-Lifshitz gravity is extended to wave probe analysis within the framework of quantum mechanics. The time-like naked singularity that develops when ωM2 < 1/2 is probed with quantum fields obeying Klein-Gordon and Chandrasekhar-Dirac equations. The quantum field probe of the naked singularity has revealed that both the spatial part of the wave and the Hamiltonian operators of Klein-Gordon and Chandrasekhar-Dirac equations are essentially self-adjoint, and thus, the naked singularity in the Kehagias-Sfetsos spacetime becomes quantum mechanically non-singular.

1.
G. T.
Horowitz
, “
Spacetime in string theory
,”
New J. Phys.
7
,
201
(
2005
).
2.
M.
Natsuume
, “
The singularity problem in string theory
,” e-print arXiv:gr-qc/0108059.
3.
A.
Ashtekar
, “
Singularity resolution in loop quantum cosmology: A brief overview
,”
J. Phys.: Conf. Ser.
189
,
012003
(
2009
).
4.
P.
Hořava
, “
Membranes at quantum criticality
,”
J. High Energy Phys.
2009
(
03
),
020
.
5.
P.
Hořava
, “
Quantum gravity at a Lifshitz point
,”
Phys. Rev. D
79
,
084008
(
2009
).
6.
A.
Wang
, “
Hořava gravity at a Lifshitz point: A progress report
,”
Int. J. Mod. Phys. D
26
,
1730014
(
2017
); e-print arXiv:1701.06087.
7.
A.
Kehagias
and
K.
Sfetsos
, “
The black hole and FRW geometries of non-relativistic gravity
,”
Phys. Lett. B
678
,
123
126
(
2009
).
8.
M. I.
Park
, “
The black hole and cosmological solutions in IR modified Hořava gravity
,”
J. High Energy Phys.
2009
(
9
),
123
.
9.
A.
Hakimov
,
B.
Turimov
,
A.
Abdujabbarov
, and
B.
Ahmedov
, “
Quantum interference effects in Hořava-Lifshitz gravity
,”
Mod. Phys. Lett. A
25
,
3115
3127
(
2010
).
10.
A.
Abdujabbarov
,
B.
Ahmedov
, and
A.
Hakimov
, “
A particle motion around black hole in Hořava-Lifshitz gravity
,”
Phys. Rev. D
83
,
044053
(
2011
).
11.
A. N.
Aliev
and
Ç.
Şentürk
, “
Slowly rotating black hole solutions to Hořava-Lifshitz gravity
,”
Phys. Rev. D
82
,
104016
(
2010
).
12.
L.
Iorio
and
M. L.
Ruggiero
, “
Hořava-Lifshitz gravity: Tighter constraints for the Kehagias-Sfetsos solution from new solar system data
,”
Int. J. Mod. Phys. D
20
,
1079
1093
(
2011
).
13.
V.
Enolskii
,
B.
Hartmann
,
V.
Kagramanova
,
J.
Kunz
,
C.
Lammerzahl
, and
P.
Sirimachan
, “
Particle motion in Hořava-Lifshitz black hole space-times
,”
Phys. Rev. D
84
,
084011
(
2011
).
14.
J.
Chen
and
Y.
Wang
, “
The timelike geodesic motion in Hořava-Lifshitz space-times
,”
Int. J. Mod. Phys. A
25
,
1439
(
2010
).
15.
B.
Gwak
and
B.-H.
Lee
, “
Particle probe of Hořava-Lifshitz gravity
,”
J. Cosmol. Astropart. Phys.
2010
,
031
.
16.
R.
Konoplya
, “
Towards constraining of the Hořava-Lifshitz gravities
,”
Phys. Lett. B
679
,
499
(
2009
).
17.
L.
Iorio
and
M. L.
Ruggiero
, “
Phenomenological constraints on the Kehagias-Sfetsos solution in the Hořava-Lifshitz gravity from solar system orbital motions
,”
Int. J. Mod. Phys. A
25
,
5399
5408
(
2010
).
18.
M.
Liu
,
J.
Lu
,
B.
Yu
, and
J.
Lu
, “
Solar system constraints on asymptotically flat IR modified Hořava gravity through light deflection
,”
Gen. Relativ. Gravitation
43
,
1401
1415
(
2011
).
19.
Z.
Stuchlik
and
J.
Schee
, “
Optical effects related to Keplerian discs orbiting Kehagias-Sfetsos naked singularities
,”
Classical Quantum Gravity
31
,
195013
(
2014
).
20.
R. S. S.
Vieira
,
J.
Schee
,
W.
Kluzniak
,
Z.
Stuchlik
, and
M.
Abramowicz
, “
Circular geodesics of naked singularities in the Kehagias-Sfetsos metric of Hořava’s gravity
,”
Phys. Rev. D
90
,
024035
(
2013
).
21.
R. M.
Wald
, “
Dynamics in nonglobally hyperbolic, static space-times
,”
J. Math. Phys.
21
,
2802
(
1980
).
22.
G. T.
Horowitz
and
D.
Marolf
, “
Quantum probes of spacetime singularities
,”
Phys. Rev. D
52
,
5670
(
1995
).
23.
A.
Ishibashi
and
A.
Hosoya
, “
Who’s afraid of naked singularities? Probing timelike singularities with finite energy waves
,”
Phys. Rev. D
60
,
104028
(
1999
).
24.
T. M.
Helliwell
,
D. A.
Konkowski
, and
V.
Arndt
, “
Quantum singularity in quasiregular spacetime, as indicated by Klein-Gordon, Maxwell and Dirac fields
,”
Gen. Relativ. Gravitation
35
,
79
(
2003
).
25.
J. P. M.
Pitelli
and
P. S.
Letelier
, “
Quantum singularities in static spacetimes
,”
Int. J. Mod. Phys. D
20
,
729
743
(
2011
).
26.
H.
Weyl
, “
Über gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen entwicklungen willkürlicher funktionen
,”
Math. Ann.
68
,
220
269
(
1910
).
27.
J.
von Neumann
, “
Allgemeine eigenwerttheorie hermitescher funktionaloperatoren
,”
Math. Ann.
102
,
49
131
(
1929
).
28.
S.
Chandrasekhar
,
The Mathematical Theory of Black Holes
(
Oxford University Press
,
1992
).
29.
O.
Gurtug
and
T.
Tahamtan
, “
Quantum singularities in a model of f(R) gravity
,”
Eur. Phys. J. C
72
,
2091
(
2012
).
30.
O.
Gurtug
,
M.
Halilsoy
, and
S.
Habib Mazharimousavi
, “
Quantum probes of timelike naked singularities in the weak field regime of f(R) global monopole spacetime
,”
J. High Energy Phys.
01
,
178
(
2014
).
31.
J. P. M.
Pitelli
and
A.
Saa
, “
Quantum singularities in Hořava-Lifshitz cosmology
,”
Phys. Rev. D
86
,
063506
(
2012
).
32.
T. M.
Helliwell
and
D. A.
Konkowski
, “
Quantum healing of classical singularities in power law spacetimes
,”
Classical Quantum Gravity
24
,
3377
3390
(
2007
).
33.
T. M.
Helliwell
and
D. A.
Konkowski
, “
Quantum singularities in spherically symmetric, conformally static spacetimes
,”
Phys. Rev. D
87
,
104041
(
2013
).
34.
D. A.
Konkowski
and
T. M.
Helliwell
, “
Understanding singularities—Classical and quantum
,”
Int. J. Mod. Phys. A
31
,
1641007
(
2016
).
35.
M.
Reed
and
B.
Simon
,
Fourier Analysis and Self-Adjointness
(
Academic Press
,
New York
,
1972
).
You do not currently have access to this content.