We consider two families of extensions of the oscillator in a d-dimensional constant-curvature space and analyze them in a deformed supersymmetric framework, wherein the starting oscillator is known to exhibit a deformed shape invariance property. We show that the first two members of each extension family are also endowed with such a property, provided some constraint conditions relating the potential parameters are satisfied, in other words they are conditionally deformed shape invariant. Since, in the second step of the construction of a partner potential hierarchy, the constraint conditions change, we impose compatibility conditions between the two sets to build potentials with known ground and first excited states. To extend such results to any members of the two families, we devise a general method wherein the first two superpotentials, the first two partner potentials, and the first two eigenstates of the starting potential are built from some generating function W+(r) [and its accompanying function W(r)].

1.
P. M.
Mathews
and
M.
Lakshmanan
,
Q. Appl. Math.
32
,
215
(
1974
).
2.
J. F.
Cariñena
,
M. F.
Rañada
,
M.
Santander
, and
M.
Senthilvelan
,
Nonlinearity
17
,
1941
(
2004
).
3.
J. F.
Cariñena
,
M. F.
Rañada
, and
M.
Santander
,
Rep. Math. Phys.
54
,
285
(
2004
).
4.
J. F.
Cariñena
,
M. F.
Rañada
, and
M.
Santander
,
Ann. Phys.
322
,
434
(
2007
).
5.
A.
Schulze-Halberg
and
J. R.
Morris
,
J. Phys. A: Math. Theor.
45
,
305301
(
2012
).
6.
J. F.
Cariñena
,
M. F.
Rañada
, and
M.
Santander
,
Ann. Phys.
322
,
2249
(
2007
).
7.
J. F.
Cariñena
,
M. F.
Rañada
, and
M.
Santander
,
J. Math. Phys.
48
,
102106
(
2007
).
9.
J. F.
Cariñena
,
M. F.
Rañada
, and
M.
Santander
,
J. Phys. A: Math. Theor.
45
,
265303
(
2012
).
10.
C.
Quesne
,
J. Math. Phys.
57
,
102101
(
2016
).
11.
D.
Gómez-Ullate
,
Y.
Grandati
, and
R.
Milson
,
J. Math. Phys.
55
,
043510
(
2014
).
12.
C.
Quesne
and
V. M.
Tkachuk
,
J. Phys. A: Math. Gen.
37
,
4267
(
2004
).
13.
B.
Bagchi
,
A.
Banerjee
,
C.
Quesne
, and
V. M.
Tkachuk
,
J. Phys. A: Math. Gen.
38
,
2929
(
2005
).
14.
C.
Quesne
,
J. Math. Phys.
58
,
052104
(
2017
).
15.
A. V.
Turbiner
and
A. G.
Ushveridze
,
Phys. Lett. A
126
,
181
(
1987
).
16.
A. V.
Turbiner
,
Commun. Math. Phys.
118
,
467
(
1988
).
17.
A. G.
Ushveridze
,
Quasi-Exactly Solvable Models in Quantum Mechanics
(
IOP
,
Bristol
,
1994
).
18.
A.
González-López
,
N.
Kamran
, and
P. J.
Olver
,
Commun. Math. Phys.
153
,
117
(
1993
).
20.
A.
Ronveaux
,
Heun Differential Equations
(
Oxford University Press
,
Oxford
,
1995
).
21.
M.
Gaudin
,
La Fonction d’Onde de Bethe
(
Masson
,
Paris
,
1983
).
23.
Y.-Z.
Zhang
,
J. Phys. A: Math. Theor.
45
,
065206
(
2012
).
24.
I. E.
Gendenshtein
,
JETP Lett.
38
,
356
(
1983
).
25.
F.
Cooper
,
A.
Khare
, and
U.
Sukhatme
,
Phys. Rep.
251
,
267
(
1995
).
26.
A.
Gangopadhyaya
,
A.
Khare
, and
U. P.
Sukhatme
,
Phys. Lett. A
208
,
261
(
1995
).
27.
D. P.
Jatkar
,
C.
Nagaraja Kumar
, and
A.
Khare
,
Phys. Lett. A
142
,
200
(
1989
).
28.
P.
Roy
and
Y. P.
Varshni
,
Mod. Phys. Lett. A
6
,
1257
(
1991
).
29.
B.
Chakrabarti
,
J. Phys. A: Math. Theor.
41
,
405301
(
2008
).
30.
S.
Bera
,
B.
Chakrabarti
, and
T. K.
Das
,
Phys. Lett. A
381
,
1356
(
2017
).
31.
V. M.
Tkachuk
,
Phys. Lett. A
245
,
177
(
1998
).
32.
V. M.
Tkachuk
,
J. Phys. A: Math. Gen.
34
,
6339
(
2001
).
33.
T. V.
Kuliy
and
V. M.
Tkachuk
,
J. Phys. A: Math. Gen.
32
,
2157
(
1999
).
34.
O.
Mustafa
and
S. H.
Mazharimousavi
,
Int. J. Theor. Phys.
46
,
1786
(
2007
).
You do not currently have access to this content.