Maps on a parameter space for expressing distribution functions are exactly derived from the Perron-Frobenius equations for a generalized Boole transform family. Here the generalized Boole transform family is a one-parameter family of maps, where it is defined on a subset of the real line and its probability distribution function is the Cauchy distribution with some parameters. With this reduction, some relations between the statistical picture and the orbital one are shown. From the viewpoint of information geometry, the parameter space can be identified with a statistical manifold, and then it is shown that the derived maps can be characterized. Also, with an induced symplectic structure from a statistical structure, symplectic and information geometric aspects of the derived maps are discussed.

1.
K.
Umeno
,
Phys. Rev. E
55
,
5280
5284
(
1997
).
2.
K.
Umeno
,
Jpn. J. Appl. Phys.
39
,
1442
1456
(
2000
).
3.
K.
Umeno
,
Nonlinear Theory Its Appl., IEICE
7
,
14
20
(
2016
).
4.
K.
Umeno
and
K.
Okubo
,
Prog. Theor. Exp. Phys.
2016
,
021A01
.
5.
M.
Shintani
and
K.
Umeno
,
Prog. Theor. Exp. Phys.
2018
,
013A01
.
6.
S.
Amari
and
H.
Nagaoka
,
Methods of Information Geometry
(
AMS, Oxford University Press
,
2000
).
7.
N.
Ay
,
J.
Jost
 et al,
Information Geometry
(
Springer
,
2017
).
8.
M.
Hayashi
,
Quantum Information: An Introduction
(
Springer
,
2006
).
9.
M.
Leok
and
J.
Zhang
,
Entropy
19
,
518
(
2017
).
10.
T.
Noda
,
J. Aust. Math. Soc.
90
,
371
384
(
2011
).
11.
A.
Fujiwara
and
S. I.
Amari
,
Phys. D
80
,
317
327
(
1995
).
12.
Y.
Nakamura
,
Jpn. J. Ind. Appl. Math.
11
,
21
30
(
1994
).
13.
Y.
Uwano
,
Math. Model. Geom.
4
,
19
33
(
2016
); e-print arXiv:1601.07983.
14.
N.
Boumuki
and
T.
Noda
,
Fundam. J. Math. Math. Sci.
6
,
51
66
(
2016
), http://frdinit.com/on_gradient_and_hamiltonian.pdf.
15.
J.
Aaronson
,
An Introduction to Infinite Ergodic Theory
(
AMS
,
1997
).
16.
Y.
Nakamura
,
J. Comput. Appl. Math.
131
,
161
(
2001
).
17.
K.
Takano
,
J. Geom.
85
,
171
187
(
2006
).
18.
M.
Nakahara
,
Geometry, Topology and Physics
(
Institute of Physics Publishing
,
1990
).
19.
S.
Kobayashi
and
K.
Nomizu
,
Foundation of Differential Geometry II
(
Interscience
,
1969
).
20.
A. C.
da Silva
,
Lectures on Symplectic Geometry
, 2nd ed. (
Springer
,
2008
).
21.
A.
Moroianu
,
Lectures on Kähler Geometry
, (
Cambridge University Press
,
2007
); arXiv:hal-00001136v1 (
2004
).
22.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
, 2nd ed. (
Springer
,
1997
).
23.
P.
Bieliavsky
 et al, e-print arXiv:math.DG/0511194v2 (
2006
).
24.
H.
Furuhata
,
Differ. Geom. Its Appl.
27
,
420
429
(
2009
).
25.
G.
Bazzoni
, e-print arXiv:1711.02440.
26.
S.
Dragomir
and
L.
Ornea
,
Locally Conformal Kähler Geometry
(
Birkhäuser
,
1998
).
You do not currently have access to this content.