We present a covariant multisymplectic formulation for the Einstein-Hilbert model of general relativity. As it is described by a second-order singular Lagrangian, this is a gauge field theory with constraints. The use of the unified Lagrangian-Hamiltonian formalism is particularly interesting when it is applied to these kinds of theories, since it simplifies the treatment of them, in particular, the implementation of the constraint algorithm, the retrieval of the Lagrangian description, and the construction of the covariant Hamiltonian formalism. In order to apply this algorithm to the covariant field equations, they must be written in a suitable geometrical way, which consists of using integrable distributions, represented by multivector fields of a certain type. We apply all these tools to the Einstein-Hilbert model without and with energy-matter sources. We obtain and explain the geometrical and physical meaning of the Lagrangian constraints and we construct the multimomentum (covariant) Hamiltonian formalisms in both cases. As a consequence of the gauge freedom and the constraint algorithm, we see how this model is equivalent to a first-order regular theory, without gauge freedom. In the case of the presence of energy-matter sources, we show how some relevant geometrical and physical characteristics of the theory depend on the type of source. In all the cases, we obtain explicitly multivector fields which are solutions to the gravitational field equations. Finally, a brief study of symmetries and conservation laws is done in this context.

1.
Aldaya
,
V.
and
de Azcarraga
,
J. A.
, “
Variational principles on rth order jets of fibre bundles in field theory
,”
J. Math. Phys.
19
(
9
),
1869
1875
(
1978
).
2.
Capriotti
,
S.
, “
Differential geometry, Palatini gravity and reduction
,”
J. Math. Phys.
55
(
1
),
012902
(
2014
).
3.
Capriotti
,
S.
, “
Unified formalism for Palatini gravity
,”
Int. J. Geom. Methods Mod. Phys.
15
,
1850044
(
2018
).
4.
Castrillón
,
M.
,
Muñoz-Masqué
,
J.
, and
Rosado
,
M. E.
, “
First-order equivalent to Einstein-Hilbert Lagrangian
,”
J. Math. Phys.
55
(
8
),
082501
(
2014
).
5.
Cianci
,
R.
,
Vignolo
,
S.
, and
Bruno
,
D.
, “
General relativity as a constrained gauge theory
,”
Int. J. Geom. Methods Mod. Phys.
3
(
8
),
1493
1500
(
2006
).
6.
Cremaschini
,
C.
and
Tessarotto
,
M.
, “
Manifest covariant Hamiltonian theory of general relativity
,”
App. Phys. Res.
8
(
2
),
60
81
(
2016
).
7.
Cremaschini
,
C.
and
Tessarotto
,
M.
, “
Hamiltonian approach to GR—Part 1: Covariant theory of classical gravity
,”
Eur. Phys. J. C
77
,
329
(
2017
).
8.
Dadhich
,
N.
and
Pons
,
J. M.
, “
On the equivalence of the Einstein-Hilbert and the Einstein-Palatini formulations of general relativity for an arbitrary connection
,”
Gen. Relativ. Gravitation
44
(
9
),
2337
2352
(
2012
).
9.
de León
,
M.
,
Marín-Solano
,
J.
,
Marrero
,
J. C.
,
Muñoz-Lecanda
,
M. C.
, and
Román-Roy
,
N.
, “
Singular Lagrangian systems on jet bundles
,”
Fortschr. Phys.
50
(
2
),
105
169
(
2002
).
10.
de León
,
M.
,
Marín-Solano
,
J.
,
Marrero
,
J. C.
,
Muñoz-Lecanda
,
M. C.
, and
Román-Roy
,
N.
, “
Premultisymplectic constraint algorithm for field theories
,”
Int. J. Geom. Methods Mod. Phys.
2
(
5
),
839
871
(
2005
).
11.
de León
,
M.
,
Martín de Diego
,
D.
, and
Santamaría-Merino
,
A.
, “
Symmetries in classical field theory
,”
Int. J. Geom. Methods Mod. Phys.
1
(
5
),
651
710
(
2004
).
12.
Echeverría-Enríquez
,
A.
,
Muñoz-Lecanda
,
M. C.
, and
Román-Roy
,
N.
, “
Geometry of Lagrangian first-order classical field theories
,”
Fortschr. Phys.
44
,
235
280
(
1996
).
13.
Echeverría-Enríquez
,
A.
,
Muñoz-Lecanda
,
M. C.
, and
Román-Roy
,
N.
, “
Multivector fields and connections: Setting Lagrangian equations in field theories
,”
J. Math. Phys.
39
(
9
),
4578
4603
(
1998
).
14.
Echeverría-Enríquez
,
A.
,
López
,
C.
,
Marín-Solano
,
J.
,
Muñoz-Lecanda
,
M. C.
, and
Román-Roy
,
N.
, “
Lagrangian-Hamiltonian unified formalism for field theory
,”
J. Math. Phys.
45
(
1
),
360
380
(
2004
).
15.
Esposito
,
G.
,
Stornaiolo
,
C.
, and
Gionti
,
G.
, “
Spacetime covariant form of Ashtekar’s constraints
,”
II Nuovo Cimento B
110
(
10
),
1137
1152
(
1995
).
16.
Fernández
,
A.
,
García
,
P. L.
, and
Rodrigo
,
C.
, “
Stress-energy-momentum tensors in higher order variational calculus
,”
J. Geom. Phys.
34
(
1
),
41
72
(
2000
).
17.
Forger
,
M.
and
Romer
,
H.
, “
Currents and the energy-momentum tensor in classical field theory: A fresh look at an old problem
,”
Ann. Phys.
309
(
2
),
306
389
(
2004
).
18.
García
,
P. L.
and
Muñoz-Masqué
,
J.
, “
On the geometrical structure of higher order variational calculus
,” in
Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Volume I, Torino, 1982
[
Atti. Accad. Sci. Torino Cl. Sci. Fis. Math. Natur.
117
(
Suppl. 1
),
127
147
(
1983
)].
19.
Gaset
,
J.
,
Prieto-Martínez
,
P. D.
, and
Román-Roy
,
N.
, “
Variational principles and symmetries on fibered multisymplectic manifolds
,”
Commun. Math.
24
(
2
),
137
152
(
2016
).
20.
Gaset
,
J.
and
Román-Roy
,
N.
, “
Order reduction, projectability and constraints of second-order field theories and higher-order mechanics
,”
Rep. Math. Phys.
78
(
3
),
327
337
(
2016
).
21.
Giachetta
,
G.
,
Mangiarotti
,
L.
, and
Sardanashvily
,
G.
,
New Lagrangian and Hamiltonian Methods in Field Theory
(
World Scientific Publishing Co., Inc.
,
River Edge, NJ
,
1997
), ISBN: 981-02-1587-8.
22.
Gotay
,
M. J.
,
Isenberg
,
J.
,
Marsden
,
J. E.
, and
Montgomery
,
R.
, “
Momentum maps and classical relativistic fields. I. Covariant theory
,” e-print arXiv:physics/9801019 [math-ph] (
2004
).
23.
Gotay
,
M. J.
and
Marsden
,
J. E.
, “
Stress-energy-momentum tensors and the Belinfante-Rosenfeld formula
,”
Contemp. Math.
132
,
367
392
(
1992
).
24.
Gràcia
,
X.
,
Pons
,
J. M.
, and
Román-Roy
,
N.
, “
Higher order conditions for singular Lagrangian dynamics
,”
J. Phys. A: Math. Gen.
25
(
7
),
1989
2004
(
1992
).
25.
Herman
,
J.
, “
Noether’s theorem in multisymplectic geometry
,”
Diff. Geom. Appl.
56
(
2
),
260
294
(
2018
).
26.
Ibort
,
A.
and
Spivak
,
A.
, “
On a covariant Hamiltonian description of Palatini’s gravity on manifolds with boundary
,” e-print arXiv:1605.03492 [math-ph] (
2016
).
27.
Kanatchikov
,
I. V.
, “
Precanonical quantum gravity: Quantization without the space-time decomposition
,”
Int. J. Theor. Phys.
40
,
1121
1149
(
2001
).
28.
Kanatchikov
,
I. V.
, “
On precanonical quantization of gravity
,”
Nonlinear Phenom. Complex Syst.
17
,
372
376
(
2014
).
29.
Kanatchikov
,
I. V.
, “
On the ‘spin connection foam’ picture of quantum gravity from precanonical quantization
,” in
Proceedings of the 14th Marcel Grossmann Meeting on General Relativity
(
University Roma “La Sapienza,”
Italy
,
2015
), pp.
3907
3915
.
30.
Kouranbaeva
,
S.
and
Shkoller
,
S.
, “
A variational approach to second-order multisymplectic field theory
,”
J. Geom. Phys.
35
,
333
366
(
2000
).
31.
Krupka
,
D.
, “
Variational principles for energy-momentum tensors
,”
Rep. Math. Phys.
49
(
2-3
),
259
268
(
2002
).
32.
Krupka
,
D.
,
Introduction to Global Variational Geometry
, Atlantis Studies in Variational Geometry (
Atlantis Press
,
2015
).
33.
Krupka
,
D.
and
Stepankova
,
O.
, “
On the Hamilton form in second order calculus of variations
,” in
Proceedings of the International Meeting on Geometry and Physics, Florence 1982
(
Pitagora
,
Bologna
,
1983
), pp.
85
101
.
34.
Muñoz-Masqué
,
J.
, “
Poincaré-Cartan forms in higher order variational calculus on fibred manifolds
,”
Rev. Mat. Iberoam.
1
,
85
126
(
1985
).
35.
Prieto Martínez
,
P. D.
and
Román-Roy
,
N.
, “
A new multisymplectic unified formalism for second-order classical field theories
,”
J. Geom. Mech.
7
(
2
),
203
253
(
2015
).
36.
Prieto Martínez
,
P. D.
and
Román-Roy
,
N.
, “
Variational principles for multisymplectic second-order classical field theories
,”
Int. J. Geom. Methods Mod. Phys.
12
(
8
),
1560019
(
2015
).
37.
Román-Roy
,
N.
, “
Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories
,”
Symmetry, Integrability Geom.: Methods Appl.
5
(
100
),
25
(
2009
).
38.
Rosado
,
M. E.
and
Muñoz-Masqué
,
J.
, “
Integrability of second-order Lagrangians admitting a first-order Hamiltonian formalism
,”
Differ. Geom. Appl.
35
,
164
177
(
2014
).
39.
Rosado
,
M. E.
and
Muñoz-Masqué
,
J.
, “
Second-order Lagrangians admitting a first-order Hamiltonian formalism
,”
J. Ann. Math.
197
(
2
),
357
397
(
2018
).
40.
Rovelli
,
C.
, “
A note on the foundation of relativistic mechanics. II: Covariant Hamiltonian general relativity
,” in
Topics in Mathematical Physics, General Relativity and Cosmology
, edited by
Garcia-Compean
,
H.
,
Mielnik
,
B.
,
Montesinos
,
M.
, and
Przanowski
,
M.
(
World Scientific
,
Singapore
,
2006
), p.
397
.
41.
Sardanashvily
,
G.
,
Generalized Hamiltonian Formalism for Field Theory. Constraint Systems
(
World Scientific Publishing Co., Inc.
,
River Edge, NJ
,
1995
), ISBN: 981-02-2045-6.
42.
Saunders
,
D. J.
,
The Geometry of Jet Bundles
, Volume 142 of London Mathematical Society, Lecture Note Series (
Cambridge University Press
,
Cambridge, New York
,
1989
), ISBN-13: 978-0521369480.
43.
Saunders
,
D. J.
and
Crampin
,
M.
, “
On the Legendre map in higher-order field theories
,”
J. Phys. A: Math. Gen.
23
(
14
),
3169
3182
(
1990
).
44.
Skinner
,
R.
and
Rusk
,
R.
, “
Generalized Hamiltonian dynamics. I. Formulation on T*Q ⊕ TQ
,”
J. Math. Phys.
24
(
11
),
2589
2594
(
1983
).
45.
Vey
,
D.
, “
Multisymplectic formulation of vielbein gravity. De Donder-Weyl formulation, Hamiltonian (n − 1)-forms
,”
Classical Quantum Gravity
32
(
9
),
095005
(
2015
).
46.
Vey
,
D.
, “
10-plectic formulation of gravity and Cartan connections
,” preprint arXiv:hal-01408289 (
2016
).
47.
Voicu
,
N.
, “
Energy-momentum tensors in classical field theories. A modern perspective
,”
Int. J. Geom. Methods Mod. Phys.
13
(
8
),
1640001
(
2016
).
You do not currently have access to this content.