For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.
REFERENCES
1.
Abanin
, D. A.
and Papić
, Z.
, “Recent progress in many-body localization
,” Ann. Phys.
529
, 1700169
(2017
).2.
Abdul-Rahman
, H.
, Nachtergaele
, B.
, Sims
, R.
, and Stolz
, G.
, “Localization properties of the XY spin chain: A review of mathematical results with an eye toward many-body localization
,” Ann. Phys.
529
, 1600280
(2017
).3.
Abdul-Rahman
, H.
, Nachtergaele
, B.
, Sims
, R.
, and Stolz
, G.
, “Entanglement dynamics of disordered quantum XY chains
,” Lett. Math. Phys.
106
, 649
–674
(2016
).4.
Abdul-Rahman
, H.
, Sims
, R.
, and Stolz
, G.
, “Correlations in disordered quantum harmonic oscillator systems: The effects of excitations and quantum quenches
,” Proceedings of QMath13: Mathematical Results in Quantum Physics (to be published); e-print arXiv:1704.04841 (2017
).5.
Abdul-Rahman
, H.
and Stolz
, G.
, “A uniform area law for the entanglement of eigenstates in the disordered XY chain
,” J. Math. Phys.
56
, 121901
(2015
).6.
Agarwal
, K.
, Altman
, E.
, Demler
, E.
, Gopalakrishnan
, S.
, Huse
, D. A.
, and Knap
, M.
, “Rare-region effects and dynamics near the many-body localization transition
,” Ann. Phys.
529
, 1600326
(2017
).7.
Altman
, E.
and Vosk
, R.
, “Universal dynamics and renormalization in many body localized systems
,” Annu. Rev. Condens. Matter Phys.
6
, 383
–409
(2015
).8.
Araki
, H.
and Shiraishi
, M.
, “On quasifree states of the canonical commutation relations (I)
,” Publ. Res. Inst. Math. Sci.
7
, 105
–120
(1971/72
).9.
Audenaert
, K.
, Eisert
, J.
, and Plenio
, M. B.
, “Entanglement properties of the harmonic chain
,” Phys. Rev. A
66
, 042327
(2002
).10.
Bartlett
, S. D.
, Sanders
, B. C.
, Braunstein
, S. L.
, and Nemoto
, K.
, “Efficient classical simulation of continuous variable quantum information processes
,” Phys. Rev. Lett.
88
, 097904
(2002
).11.
Beaud
, V.
and Warzel
, S.
, “Bounds on the entanglement entropy of droplet states in the XXZ spin chain
,” J. Math. Phys.
59
, 012109
(2018
).12.
Benzi
, M.
and Simoncini
, V.
, “Decay bounds for functions of matrices with banded or Kronecker structure
,” SIAM J. Matrix Anal. Appl.
36
, 1263
–1282
(2015
).13.
Brandao
, F.
and Horodecki
, M.
, “An area law for entanglement from exponential decay of correlations
,” Nat. Phys.
9
, 721
–726
(2013
).14.
Brandao
, F.
and Horodecki
, M.
, “Exponential decay of correlations implies area law
,” Commun. Math. Phys.
333
, 761
–798
(2015
).15.
Bratteli
, O.
and Robinson
, D.
, Operator Algebras and Quantum Statistical Mechanics 2
, 2nd ed. (Springer Verlag
, New York, NY
, 1997
).16.
Bruneau
, L.
and Dereziński
, J.
, “Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov transformations
,” J. Math. Phys.
48
, 022101
(2007
).17.
de Gosson
, M.
, Symplectic Geometry and Quantum Mechanics
, Operator Theory: Advances and Applications (Birkhäuser
, Basel
, 2006
).18.
Dell’Anno
, F.
, De Siena
, S.
, Albano Farias
, L.
, and Illuminati
, F.
, “Continuous variable quantum teleportation with non-Gaussian resources
,” Phys. Rev. A
76
, 022301
(2007
).19.
Dong
, R.
, Lassen
, M.
, Heersink
, J.
, Marquardt
, C.
, Filip
, R.
, Leuchs
, G.
, and Andersen
, U. L.
, “Experimental entanglement distillation of mesoscopic quantum states
,” Nat. Phys.
4
, 919
–923
(2008
).20.
Eisert
, J.
, Cramer
, M.
, and Plenio
, M. B.
, “Area laws for the entanglement entropy
,” Rev. Mod. Phys.
82
, 277
(2010
).21.
Eisert
, J.
, Scheel
, S.
, and Plenio
, M. B.
, “Distilling Gaussian states with Gaussian operations is impossible
,” Phys. Rev. Lett.
89
, 137903
(2002
).22.
Elgart
, A.
, Klein
, A.
, and Stolz
, G.
, “Many-body localization in the droplet spectrum of the random XXZ quantum spin chain
,” J. Funct. Anal.
(published online, 2018).23.
Feller
, W.
, An Introduction to Probability Theory and its Applications
, 2nd ed. (Wiley
, 1950
).24.
Gogolin
, C.
, Mueller
, M. P.
, and Eisert
, J.
, “Absence of thermalization in nonintegrable systems
,” Phys. Rev. Lett.
106
, 040401
(2011
).25.
Gomes
, R. M.
, Salles
, A.
, Toscano
, F.
, Souto Ribeiro
, P. H.
, and Walborn
, S. P.
, “Quantum entanglement beyond Gaussian criteria
,” Proc. Natl. Acad. Sci. U. S. A.
106
, 21517
–21520
(2009
).26.
Hage
, B.
, Samblowski
, A.
, DiGuglielmo
, J.
, Franzen
, A.
, Fiurášek
, J.
, and Schnabel
, R.
, “Preparation of distilled and purified continuous-variable entangled states
,” Nat. Phys.
4
, 915
–918
(2008
).27.
Horodecki
, M.
, Horodecki
, P.
, and Horodecki
, R.
, “Separability of mixed states: Necessary and sufficient conditions
,” Phys. Lett. A
223
, 1
–8
(1996
).28.
Horodecki
, R.
, Horodecki
, P.
, Horodecki
, M.
, and Horodecki
, K.
, “Quantum entanglement
,” Rev. Mod. Phys.
81
, 865
–942
(2009
).29.
Lami
, L.
, Serafini
, A.
, and Adesso
, G.
, “Gaussian entanglement revisited
,” New J. Phys.
20
, 023030
(2018
).30.
Manuceau
, J.
and Verbeure
, A.
, “Quasi-free states of the CCR algebra and Bogoliubov transformations
,” Commun. Math. Phys.
9
, 293
–302
(1968
).31.
32.
Nachtergaele
, B.
, Sims
, R.
, and Stolz
, G.
, “Quantum harmonic oscillator systems with disorder
,” J. Stat. Phys.
149
, 969
–1012
(2012
).33.
Nachtergaele
, B.
, Sims
, R.
, and Stolz
, G.
, “An area law for the bipartite entanglement of disordered oscillator systems
,” J. Math. Phys.
54
, 042110
(2013
).34.
Nandkishore
, R.
and Huse
, D. A.
, “Many body localization and thermalization in quantum statistical mechanics
,” Annu. Rev. Condens. Matter Phys.
6
, 15
–38
(2015
).35.
Nielsen
, M.
and Chuang
, I.
, Quantum Computation and Quantum Information
(Cambridge University Press
, 2000
).36.
Opatrny
, T.
, Kurizki
, G.
, and Welsch
, D.-G.
, “Continuous-variable teleportation improvement by photon subtraction via conditional measurement
,” Phys. Rev. A
61
, 032302
(2000
).37.
Peres
, A.
, “Separability criterion for density matrices
,” Phys. Rev. Lett.
77
, 1413
(1996
).38.
Reed
, M.
and Simon
, B.
, Methods of Modern Mathematical Physics
(Academic Press
, San Diego
, 1975
), Vol. 2.39.
Schuch
, N.
, Cirac
, J. I.
, and Wolf
, M.
, “Quantum states on harmonic lattices
,” Commun. Math. Phys.
267
, 65
–95
(2006
).40.
Seiringer
, R.
and Warzel
, S.
, “Decay of correlations and absence of superfluidity in the disordered Tonks-Girardeau gas
,” New J. Phys.
18
, 035002
(2016
).41.
Seshadreesan
, K.
, Dowling
, J.
, and Agarwal
, G.
, “Non-Gaussian entangled states and quantum teleportation of Schrödinger-cat states
,” Phys. Scr.
90
, 074029
(2015
).42.
Shale
, D.
, “Linear symmetries of free boson fields
,” Trans. Am. Math. Soc.
103
, 149
–167
(1962
).43.
Sims
, R.
and Warzel
, S.
, “Decay of determinantal and pfaffian correlation functionals in one-dimensional lattices
,” Commun. Math. Phys.
347
, 903
–931
(2016
).44.
Stanley
, R.
, Enumerative Combinatorics
(Cambridge University Press
, 1997
).45.
Strobel
, H.
, Muessel
, W.
, Linnemann
, D.
, Zibold
, T.
, Hume
, D. B.
, Pezzè
, L.
, Smerzi
, A.
, and Oberthaler
, M. K.
, “Fisher information and entanglement of non-Gaussian spin states
,” Science
345
, 424
–427
(2014
).46.
Truesdell
, C.
, “On the addition and multiplication theorems for the special functions
,” Proc. Natl. Acad. Sci. U. S. A.
36
, 752
–757
(1950
).47.
Vidal
, G.
and Werner
, R.
, “Computable measure of entanglement
,” Phys. Rev. A
65
, 032314
(2002
).48.
Walschaers
, M.
, Fabre
, C.
, Parigi
, V.
, and Treps
, N.
, “Entanglement and Wigner function negativity of multimode non-Gaussian states
,” Phys. Rev. Lett.
119
, 183601
(2017
).49.
Wang
, X.-B.
, Hiroshima
, T.
, Tomita
, A.
, and Hayashi
, M.
, “Quantum information with Gaussian states
,” Phys. Rep.
448
, 1
–111
(2007
).50.
Weedbrook
, C.
, Pirandola
, S.
, García-Patrón
, R.
, Cerf
, N. J.
, Ralph
, T. C.
, Shapiro
, J. H.
, and Lloyd
, S.
, “Gaussian quantum information
,” Rev. Mod. Phys.
84
, 621
(2012
).51.
Weidmann
, J.
, Linear Operators in Hilbert Spaces
, Volume 68 of Graduate Texts in Mathematics (Springer
, New York
, 1980
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.