For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.

1.
Abanin
,
D. A.
and
Papić
,
Z.
, “
Recent progress in many-body localization
,”
Ann. Phys.
529
,
1700169
(
2017
).
2.
Abdul-Rahman
,
H.
,
Nachtergaele
,
B.
,
Sims
,
R.
, and
Stolz
,
G.
, “
Localization properties of the XY spin chain: A review of mathematical results with an eye toward many-body localization
,”
Ann. Phys.
529
,
1600280
(
2017
).
3.
Abdul-Rahman
,
H.
,
Nachtergaele
,
B.
,
Sims
,
R.
, and
Stolz
,
G.
, “
Entanglement dynamics of disordered quantum XY chains
,”
Lett. Math. Phys.
106
,
649
674
(
2016
).
4.
Abdul-Rahman
,
H.
,
Sims
,
R.
, and
Stolz
,
G.
, “
Correlations in disordered quantum harmonic oscillator systems: The effects of excitations and quantum quenches
,” Proceedings of QMath13: Mathematical Results in Quantum Physics (to be published); e-print arXiv:1704.04841 (
2017
).
5.
Abdul-Rahman
,
H.
and
Stolz
,
G.
, “
A uniform area law for the entanglement of eigenstates in the disordered XY chain
,”
J. Math. Phys.
56
,
121901
(
2015
).
6.
Agarwal
,
K.
,
Altman
,
E.
,
Demler
,
E.
,
Gopalakrishnan
,
S.
,
Huse
,
D. A.
, and
Knap
,
M.
, “
Rare-region effects and dynamics near the many-body localization transition
,”
Ann. Phys.
529
,
1600326
(
2017
).
7.
Altman
,
E.
and
Vosk
,
R.
, “
Universal dynamics and renormalization in many body localized systems
,”
Annu. Rev. Condens. Matter Phys.
6
,
383
409
(
2015
).
8.
Araki
,
H.
and
Shiraishi
,
M.
, “
On quasifree states of the canonical commutation relations (I)
,”
Publ. Res. Inst. Math. Sci.
7
,
105
120
(
1971/72
).
9.
Audenaert
,
K.
,
Eisert
,
J.
, and
Plenio
,
M. B.
, “
Entanglement properties of the harmonic chain
,”
Phys. Rev. A
66
,
042327
(
2002
).
10.
Bartlett
,
S. D.
,
Sanders
,
B. C.
,
Braunstein
,
S. L.
, and
Nemoto
,
K.
, “
Efficient classical simulation of continuous variable quantum information processes
,”
Phys. Rev. Lett.
88
,
097904
(
2002
).
11.
Beaud
,
V.
and
Warzel
,
S.
, “
Bounds on the entanglement entropy of droplet states in the XXZ spin chain
,”
J. Math. Phys.
59
,
012109
(
2018
).
12.
Benzi
,
M.
and
Simoncini
,
V.
, “
Decay bounds for functions of matrices with banded or Kronecker structure
,”
SIAM J. Matrix Anal. Appl.
36
,
1263
1282
(
2015
).
13.
Brandao
,
F.
and
Horodecki
,
M.
, “
An area law for entanglement from exponential decay of correlations
,”
Nat. Phys.
9
,
721
726
(
2013
).
14.
Brandao
,
F.
and
Horodecki
,
M.
, “
Exponential decay of correlations implies area law
,”
Commun. Math. Phys.
333
,
761
798
(
2015
).
15.
Bratteli
,
O.
and
Robinson
,
D.
,
Operator Algebras and Quantum Statistical Mechanics 2
, 2nd ed. (
Springer Verlag
,
New York, NY
,
1997
).
16.
Bruneau
,
L.
and
Dereziński
,
J.
, “
Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov transformations
,”
J. Math. Phys.
48
,
022101
(
2007
).
17.
de Gosson
,
M.
,
Symplectic Geometry and Quantum Mechanics
, Operator Theory: Advances and Applications (
Birkhäuser
,
Basel
,
2006
).
18.
Dell’Anno
,
F.
,
De Siena
,
S.
,
Albano Farias
,
L.
, and
Illuminati
,
F.
, “
Continuous variable quantum teleportation with non-Gaussian resources
,”
Phys. Rev. A
76
,
022301
(
2007
).
19.
Dong
,
R.
,
Lassen
,
M.
,
Heersink
,
J.
,
Marquardt
,
C.
,
Filip
,
R.
,
Leuchs
,
G.
, and
Andersen
,
U. L.
, “
Experimental entanglement distillation of mesoscopic quantum states
,”
Nat. Phys.
4
,
919
923
(
2008
).
20.
Eisert
,
J.
,
Cramer
,
M.
, and
Plenio
,
M. B.
, “
Area laws for the entanglement entropy
,”
Rev. Mod. Phys.
82
,
277
(
2010
).
21.
Eisert
,
J.
,
Scheel
,
S.
, and
Plenio
,
M. B.
, “
Distilling Gaussian states with Gaussian operations is impossible
,”
Phys. Rev. Lett.
89
,
137903
(
2002
).
22.
Elgart
,
A.
,
Klein
,
A.
, and
Stolz
,
G.
, “
Many-body localization in the droplet spectrum of the random XXZ quantum spin chain
,”
J. Funct. Anal.
(published online, 2018).
23.
Feller
,
W.
,
An Introduction to Probability Theory and its Applications
, 2nd ed. (
Wiley
,
1950
).
24.
Gogolin
,
C.
,
Mueller
,
M. P.
, and
Eisert
,
J.
, “
Absence of thermalization in nonintegrable systems
,”
Phys. Rev. Lett.
106
,
040401
(
2011
).
25.
Gomes
,
R. M.
,
Salles
,
A.
,
Toscano
,
F.
,
Souto Ribeiro
,
P. H.
, and
Walborn
,
S. P.
, “
Quantum entanglement beyond Gaussian criteria
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
21517
21520
(
2009
).
26.
Hage
,
B.
,
Samblowski
,
A.
,
DiGuglielmo
,
J.
,
Franzen
,
A.
,
Fiurášek
,
J.
, and
Schnabel
,
R.
, “
Preparation of distilled and purified continuous-variable entangled states
,”
Nat. Phys.
4
,
915
918
(
2008
).
27.
Horodecki
,
M.
,
Horodecki
,
P.
, and
Horodecki
,
R.
, “
Separability of mixed states: Necessary and sufficient conditions
,”
Phys. Lett. A
223
,
1
8
(
1996
).
28.
Horodecki
,
R.
,
Horodecki
,
P.
,
Horodecki
,
M.
, and
Horodecki
,
K.
, “
Quantum entanglement
,”
Rev. Mod. Phys.
81
,
865
942
(
2009
).
29.
Lami
,
L.
,
Serafini
,
A.
, and
Adesso
,
G.
, “
Gaussian entanglement revisited
,”
New J. Phys.
20
,
023030
(
2018
).
30.
Manuceau
,
J.
and
Verbeure
,
A.
, “
Quasi-free states of the CCR algebra and Bogoliubov transformations
,”
Commun. Math. Phys.
9
,
293
302
(
1968
).
31.
Messiah
,
A.
,
Quantum Mechanics
(
Dover
,
New York
,
1999
).
32.
Nachtergaele
,
B.
,
Sims
,
R.
, and
Stolz
,
G.
, “
Quantum harmonic oscillator systems with disorder
,”
J. Stat. Phys.
149
,
969
1012
(
2012
).
33.
Nachtergaele
,
B.
,
Sims
,
R.
, and
Stolz
,
G.
, “
An area law for the bipartite entanglement of disordered oscillator systems
,”
J. Math. Phys.
54
,
042110
(
2013
).
34.
Nandkishore
,
R.
and
Huse
,
D. A.
, “
Many body localization and thermalization in quantum statistical mechanics
,”
Annu. Rev. Condens. Matter Phys.
6
,
15
38
(
2015
).
35.
Nielsen
,
M.
and
Chuang
,
I.
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2000
).
36.
Opatrny
,
T.
,
Kurizki
,
G.
, and
Welsch
,
D.-G.
, “
Continuous-variable teleportation improvement by photon subtraction via conditional measurement
,”
Phys. Rev. A
61
,
032302
(
2000
).
37.
Peres
,
A.
, “
Separability criterion for density matrices
,”
Phys. Rev. Lett.
77
,
1413
(
1996
).
38.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics
(
Academic Press
,
San Diego
,
1975
), Vol. 2.
39.
Schuch
,
N.
,
Cirac
,
J. I.
, and
Wolf
,
M.
, “
Quantum states on harmonic lattices
,”
Commun. Math. Phys.
267
,
65
95
(
2006
).
40.
Seiringer
,
R.
and
Warzel
,
S.
, “
Decay of correlations and absence of superfluidity in the disordered Tonks-Girardeau gas
,”
New J. Phys.
18
,
035002
(
2016
).
41.
Seshadreesan
,
K.
,
Dowling
,
J.
, and
Agarwal
,
G.
, “
Non-Gaussian entangled states and quantum teleportation of Schrödinger-cat states
,”
Phys. Scr.
90
,
074029
(
2015
).
42.
Shale
,
D.
, “
Linear symmetries of free boson fields
,”
Trans. Am. Math. Soc.
103
,
149
167
(
1962
).
43.
Sims
,
R.
and
Warzel
,
S.
, “
Decay of determinantal and pfaffian correlation functionals in one-dimensional lattices
,”
Commun. Math. Phys.
347
,
903
931
(
2016
).
44.
Stanley
,
R.
,
Enumerative Combinatorics
(
Cambridge University Press
,
1997
).
45.
Strobel
,
H.
,
Muessel
,
W.
,
Linnemann
,
D.
,
Zibold
,
T.
,
Hume
,
D. B.
,
Pezzè
,
L.
,
Smerzi
,
A.
, and
Oberthaler
,
M. K.
, “
Fisher information and entanglement of non-Gaussian spin states
,”
Science
345
,
424
427
(
2014
).
46.
Truesdell
,
C.
, “
On the addition and multiplication theorems for the special functions
,”
Proc. Natl. Acad. Sci. U. S. A.
36
,
752
757
(
1950
).
47.
Vidal
,
G.
and
Werner
,
R.
, “
Computable measure of entanglement
,”
Phys. Rev. A
65
,
032314
(
2002
).
48.
Walschaers
,
M.
,
Fabre
,
C.
,
Parigi
,
V.
, and
Treps
,
N.
, “
Entanglement and Wigner function negativity of multimode non-Gaussian states
,”
Phys. Rev. Lett.
119
,
183601
(
2017
).
49.
Wang
,
X.-B.
,
Hiroshima
,
T.
,
Tomita
,
A.
, and
Hayashi
,
M.
, “
Quantum information with Gaussian states
,”
Phys. Rep.
448
,
1
111
(
2007
).
50.
Weedbrook
,
C.
,
Pirandola
,
S.
,
García-Patrón
,
R.
,
Cerf
,
N. J.
,
Ralph
,
T. C.
,
Shapiro
,
J. H.
, and
Lloyd
,
S.
, “
Gaussian quantum information
,”
Rev. Mod. Phys.
84
,
621
(
2012
).
51.
Weidmann
,
J.
,
Linear Operators in Hilbert Spaces
, Volume 68 of Graduate Texts in Mathematics (
Springer
,
New York
,
1980
).
You do not currently have access to this content.