Quadratic bosonic Hamiltonians over a one-particle Hilbert space can be described by a Bogoliubov-de Gennes (BdG) Hamiltonian on a particle-hole Hilbert space. In general, the BdG Hamiltonian is not self-adjoint, but only J-self-adjoint on the particle-hole space viewed as a Krein space. Nevertheless, its energy bands can have non-trivial topological invariants like Chern numbers or winding numbers. By a thorough analysis for tight-binding models, it is proved that these invariants lead to bosonic edge modes which are robust to a large class of possibly disordered perturbations. Furthermore, general scenarios are presented for these edge states to be dynamically unstable even though the bulk modes are stable.

1.
Aidelsburger
,
M.
,
Lohse
,
M.
,
Schweizer
,
C.
,
Atala
,
M.
,
Barreiro
,
J. T.
,
Nascimbene
,
S.
,
Cooper
,
N. R.
,
Bloch
,
I.
, and
Goldman
,
N.
, “
Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
,”
Nat. Phys.
11
,
162
166
(
2015
).
2.
Agarwala
,
A.
and
Shenoy
,
V. B.
, “
Topological insulators in amorphous systems
,”
Phys. Rev. Lett.
118
,
236402
(
2017
).
3.
Bach
,
V.
and
Bru
,
J.-B.
,
Diagonalizing Quadratic Bosonic Operators by Non-Autonomous Flow Equation
, Memoirs of the American Mathematical Society (
AMS
,
Providence
,
2016
).
4.
Bardyn
,
C.-E.
,
Karzig
,
T.
,
Refael
,
G.
, and
Liew
,
T. H. C.
, “
Chiral Bogoliubov excitations in nonlinear bosonic systems
,”
Phys. Rev. B
93
,
020502
(
2016
).
5.
Barnett
,
R.
, “
Edge-state instabilities of bosons in a topological band
,”
Phys. Rev. A
88
,
063631
(
2013
).
6.
Bellissard
,
J.
, “
K-theory of C*-algebras in solid state physics
,” in
Statistical Mechanics and Field Theory: Mathematical Aspects
, Volume 257 of Lecture Notes in Physics, edited by
Dorlas
,
T.
,
Hugenholtz
,
M.
, and
Winnink
,
M.
(
Springer-Verlag
,
Berlin
,
1986
), pp.
99
156
.
7.
Bellissard
,
J.
,
van Elst
,
A.
, and
Schulz-Baldes
,
H.
, “
The non-commutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
,
5373
5451
(
1994
).
8.
Blaizot
,
J. P.
and
Ripka
,
G.
,
Quantum Theory of Finite Fermi Systems
(
MIT Press
,
Boston
,
1985
).
9.
Bourne
,
C.
and
Prodan
,
E.
, “
Non-commutative Chern numbers for generic aperiodic discrete systems
,” e-print arXiv:1712.04136.
10.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics II
, 2nd ed. (
Springer
,
Berlin
,
1997
).
11.
De Nittis
,
G.
and
Lein
,
M.
, “
On the role of symmetries in the theory of photonic crystals
,”
Ann. Phys.
350
,
568
587
(
2014
).
12.
De Nittis
,
G.
and
Schulz-Baldes
,
H.
, “
The non-commutative topology of two-dimensional dirty superconductors
,”
J. Geom. Phys.
124
,
100
123
(
2018
).
13.
Engelhardt
,
G.
and
Brandes
,
T.
, “
Topological Bogoliubov excitations in inversion-symmetric systems of interacting bosons
,”
Phys. Rev. A
91
,
053621
(
2015
).
14.
Engelhardt
,
G.
,
Benito
,
M.
,
Platero
,
G.
, and
Brandes
,
T.
, “
Topological instabilities in AC-driven bosonic systems
,”
Phys. Rev. Lett.
117
,
045302
(
2016
).
15.
Galilo
,
B.
,
Lee
,
D. K. K.
, and
Barnett
,
R.
, “
Selective population of edge states in a 2d topological band system
,”
Phys. Rev. Lett.
115
,
245302
(
2015
).
16.
Goldman
,
N.
,
Budich
,
J. C.
, and
Zoller
,
P.
, “
Topological quantum matter with ultracold gases in optical lattices
,”
Nat. Phys.
12
,
639
645
(
2016
).
17.
Jotzu
,
G.
,
Messer
,
M.
,
Desbuquois
,
R.
,
Lebrat
,
M.
,
Uehlinger
,
T.
,
Greif
,
D.
, and
Esslinger
,
T.
, “
Experimental realization of the topological Haldane model with ultracold fermions
,”
Nature
515
,
237
(
2014
).
18.
Katsura
,
H.
,
Nagaosa
,
N.
, and
Lee
,
P. A.
, “
Theory of the thermal Hall effect in quantum magnets
,”
Phys. Rev. Lett.
104
,
066403
(
2010
).
19.
Kane
,
C. L.
and
Lubensky
,
T. C.
, “
Topological boundary modes in isostatic lattices
,”
Nat. Phys.
10
,
39
45
(
2014
).
20.
Kellendonk
,
J.
,
Richter
,
T.
, and
Schulz-Baldes
,
H.
, “
Edge current channels and Chern numbers in the integer quantum Hall effect
,”
Rev. Math. Phys.
14
,
87
119
(
2002
).
21.
Langer
,
H.
, “
Zur spektraltheorie j-selbstadjungierter operatoren
,”
Math. Ann.
146
,
60
85
(
1962
).
22.
Lieb
,
E. H.
,
Seiringer
,
R.
,
Solovej
,
J. P.
, and
Yngvason
,
J.
,
The Mathematics of the Bose Gas and Its Condensation
, Oberwolfach Seminars (
Birkhäuser
,
2005
).
23.
Lu
,
L.
,
Joannopoulos
,
J. D.
, and
Soljacic
,
M.
, “
Topological photonics
,”
Nat. Photonics
8
,
821
829
(
2014
).
24.
Mitchell
,
N. P.
,
Nash
,
L. M.
,
Hexner
,
D.
,
Turner
,
A.
, and
Irvine
,
W. M. T.
, “
Amorphous gyroscopic topological metamaterials
,” e-print arXiv:1612.09267.
25.
Nam
,
P. T.
,
Napiorkowski
,
M.
, and
Solovej
,
J. P.
, “
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
,”
J. Funct. Anal.
270
,
4340
4368
(
2016
).
26.
Peano
,
V.
,
Houde
,
M.
,
Marquardt
,
F.
, and
Clerk
,
A. A.
, “
Topological quantum fluctuations and traveling wave amplifiers
,”
Phys. Rev. X
6
,
041026
(
2016
).
27.
Peano
,
V.
,
Houde
,
M.
,
Brendel
,
C.
,
Marquardt
,
F.
, and
Clerk
,
A. A.
, “
Topological phase transitions and chiral inelastic transport induced by the squeezing of light
,”
Nat. Commun.
7
,
10779
(
2016
).
28.
Prodan
,
E.
and
Prodan
,
C.
, “
Topological phonon modes and their role in dynamic instability of microtubules
,”
Phys. Rev. Lett.
103
,
248101
(
2009
).
29.
Prodan
,
E.
and
Schulz-Baldes
,
H.
,
Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
(
Springer International Publishing
,
Switzerland
,
2016
).
30.
Raghu
,
S.
and
Haldane
,
F. M. D.
, “
Analogs of quantum-Hall-effect edge states in photonic crystals
,”
Phys. Rev. A
78
,
033834
(
2008
).
31.
Schulz-Baldes
,
H.
, “
Signature and spectral flow for J-unitary S1-Fredholm operators
,”
Integr. Equations Oper. Theory
78
,
323
374
(
2014
).
32.
Schulz-Baldes
,
H.
and
Villegas-Blas
,
C.
, “
Signatures for j-hermitians and j-unitaries on Krein spaces with real structures
,”
Math. Nachr.
290
,
1840
1858
(
2017
).
33.
Shi
,
T.
,
Kimble
,
H. J.
, and
Cirac
,
J. I.
, “
Topological phenomena in classical optical networks
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E8967
(
2017
).
34.
Shindou
,
R.
,
Matsumoto
,
R.
,
Murakami
,
S.
, and
Ohe
,
J. I.
, “
Topological chiral magnonic edge mode in a magnonic crystal
,”
Phys. Rev. B
87
,
174427
(
2013
).
35.
Wu
,
Y.
,
Zhou
,
W.
, and
Kou
,
S.
, “
Bogoliubov excitacions in the Bose-Hubbard extension of a Weyl semimetal
,”
Phys. Rev. A
95
,
023620
(
2017
).
36.
Zirnbauer
,
M. R.
, “
Symmetry classes
,” in
Oxford Handbook of Random Matrix Theory
(
Oxford University Press
,
2011
), pp.
43
65
.
You do not currently have access to this content.