Quadratic bosonic Hamiltonians over a one-particle Hilbert space can be described by a Bogoliubov-de Gennes (BdG) Hamiltonian on a particle-hole Hilbert space. In general, the BdG Hamiltonian is not self-adjoint, but only J-self-adjoint on the particle-hole space viewed as a Krein space. Nevertheless, its energy bands can have non-trivial topological invariants like Chern numbers or winding numbers. By a thorough analysis for tight-binding models, it is proved that these invariants lead to bosonic edge modes which are robust to a large class of possibly disordered perturbations. Furthermore, general scenarios are presented for these edge states to be dynamically unstable even though the bulk modes are stable.
REFERENCES
1.
Aidelsburger
, M.
, Lohse
, M.
, Schweizer
, C.
, Atala
, M.
, Barreiro
, J. T.
, Nascimbene
, S.
, Cooper
, N. R.
, Bloch
, I.
, and Goldman
, N.
, “Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
,” Nat. Phys.
11
, 162
–166
(2015
).2.
Agarwala
, A.
and Shenoy
, V. B.
, “Topological insulators in amorphous systems
,” Phys. Rev. Lett.
118
, 236402
(2017
).3.
Bach
, V.
and Bru
, J.-B.
, Diagonalizing Quadratic Bosonic Operators by Non-Autonomous Flow Equation
, Memoirs of the American Mathematical Society (AMS
, Providence
, 2016
).4.
Bardyn
, C.-E.
, Karzig
, T.
, Refael
, G.
, and Liew
, T. H. C.
, “Chiral Bogoliubov excitations in nonlinear bosonic systems
,” Phys. Rev. B
93
, 020502
(2016
).5.
Barnett
, R.
, “Edge-state instabilities of bosons in a topological band
,” Phys. Rev. A
88
, 063631
(2013
).6.
Bellissard
, J.
, “K-theory of C*-algebras in solid state physics
,” in Statistical Mechanics and Field Theory: Mathematical Aspects
, Volume 257 of Lecture Notes in Physics, edited by Dorlas
, T.
, Hugenholtz
, M.
, and Winnink
, M.
(Springer-Verlag
, Berlin
, 1986
), pp. 99
–156
.7.
Bellissard
, J.
, van Elst
, A.
, and Schulz-Baldes
, H.
, “The non-commutative geometry of the quantum Hall effect
,” J. Math. Phys.
35
, 5373
–5451
(1994
).8.
Blaizot
, J. P.
and Ripka
, G.
, Quantum Theory of Finite Fermi Systems
(MIT Press
, Boston
, 1985
).9.
Bourne
, C.
and Prodan
, E.
, “Non-commutative Chern numbers for generic aperiodic discrete systems
,” e-print arXiv:1712.04136.10.
Bratteli
, O.
and Robinson
, D. W.
, Operator Algebras and Quantum Statistical Mechanics II
, 2nd ed. (Springer
, Berlin
, 1997
).11.
De Nittis
, G.
and Lein
, M.
, “On the role of symmetries in the theory of photonic crystals
,” Ann. Phys.
350
, 568
–587
(2014
).12.
De Nittis
, G.
and Schulz-Baldes
, H.
, “The non-commutative topology of two-dimensional dirty superconductors
,” J. Geom. Phys.
124
, 100
–123
(2018
).13.
Engelhardt
, G.
and Brandes
, T.
, “Topological Bogoliubov excitations in inversion-symmetric systems of interacting bosons
,” Phys. Rev. A
91
, 053621
(2015
).14.
Engelhardt
, G.
, Benito
, M.
, Platero
, G.
, and Brandes
, T.
, “Topological instabilities in AC-driven bosonic systems
,” Phys. Rev. Lett.
117
, 045302
(2016
).15.
Galilo
, B.
, Lee
, D. K. K.
, and Barnett
, R.
, “Selective population of edge states in a 2d topological band system
,” Phys. Rev. Lett.
115
, 245302
(2015
).16.
Goldman
, N.
, Budich
, J. C.
, and Zoller
, P.
, “Topological quantum matter with ultracold gases in optical lattices
,” Nat. Phys.
12
, 639
–645
(2016
).17.
Jotzu
, G.
, Messer
, M.
, Desbuquois
, R.
, Lebrat
, M.
, Uehlinger
, T.
, Greif
, D.
, and Esslinger
, T.
, “Experimental realization of the topological Haldane model with ultracold fermions
,” Nature
515
, 237
(2014
).18.
Katsura
, H.
, Nagaosa
, N.
, and Lee
, P. A.
, “Theory of the thermal Hall effect in quantum magnets
,” Phys. Rev. Lett.
104
, 066403
(2010
).19.
Kane
, C. L.
and Lubensky
, T. C.
, “Topological boundary modes in isostatic lattices
,” Nat. Phys.
10
, 39
–45
(2014
).20.
Kellendonk
, J.
, Richter
, T.
, and Schulz-Baldes
, H.
, “Edge current channels and Chern numbers in the integer quantum Hall effect
,” Rev. Math. Phys.
14
, 87
–119
(2002
).21.
Langer
, H.
, “Zur spektraltheorie j-selbstadjungierter operatoren
,” Math. Ann.
146
, 60
–85
(1962
).22.
Lieb
, E. H.
, Seiringer
, R.
, Solovej
, J. P.
, and Yngvason
, J.
, The Mathematics of the Bose Gas and Its Condensation
, Oberwolfach Seminars (Birkhäuser
, 2005
).23.
Lu
, L.
, Joannopoulos
, J. D.
, and Soljacic
, M.
, “Topological photonics
,” Nat. Photonics
8
, 821
–829
(2014
).24.
Mitchell
, N. P.
, Nash
, L. M.
, Hexner
, D.
, Turner
, A.
, and Irvine
, W. M. T.
, “Amorphous gyroscopic topological metamaterials
,” e-print arXiv:1612.09267.25.
Nam
, P. T.
, Napiorkowski
, M.
, and Solovej
, J. P.
, “Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
,” J. Funct. Anal.
270
, 4340
–4368
(2016
).26.
Peano
, V.
, Houde
, M.
, Marquardt
, F.
, and Clerk
, A. A.
, “Topological quantum fluctuations and traveling wave amplifiers
,” Phys. Rev. X
6
, 041026
(2016
).27.
Peano
, V.
, Houde
, M.
, Brendel
, C.
, Marquardt
, F.
, and Clerk
, A. A.
, “Topological phase transitions and chiral inelastic transport induced by the squeezing of light
,” Nat. Commun.
7
, 10779
(2016
).28.
Prodan
, E.
and Prodan
, C.
, “Topological phonon modes and their role in dynamic instability of microtubules
,” Phys. Rev. Lett.
103
, 248101
(2009
).29.
Prodan
, E.
and Schulz-Baldes
, H.
, Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics
(Springer International Publishing
, Switzerland
, 2016
).30.
Raghu
, S.
and Haldane
, F. M. D.
, “Analogs of quantum-Hall-effect edge states in photonic crystals
,” Phys. Rev. A
78
, 033834
(2008
).31.
Schulz-Baldes
, H.
, “Signature and spectral flow for J-unitary -Fredholm operators
,” Integr. Equations Oper. Theory
78
, 323
–374
(2014
).32.
Schulz-Baldes
, H.
and Villegas-Blas
, C.
, “Signatures for j-hermitians and j-unitaries on Krein spaces with real structures
,” Math. Nachr.
290
, 1840
–1858
(2017
).33.
Shi
, T.
, Kimble
, H. J.
, and Cirac
, J. I.
, “Topological phenomena in classical optical networks
,” Proc. Natl. Acad. Sci. U. S. A.
114
, E8967
(2017
). 34.
Shindou
, R.
, Matsumoto
, R.
, Murakami
, S.
, and Ohe
, J. I.
, “Topological chiral magnonic edge mode in a magnonic crystal
,” Phys. Rev. B
87
, 174427
(2013
).35.
Wu
, Y.
, Zhou
, W.
, and Kou
, S.
, “Bogoliubov excitacions in the Bose-Hubbard extension of a Weyl semimetal
,” Phys. Rev. A
95
, 023620
(2017
).36.
Zirnbauer
, M. R.
, “Symmetry classes
,” in Oxford Handbook of Random Matrix Theory
(Oxford University Press
, 2011
), pp. 43
–65
.© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.