In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.

1.
Arakawa
,
T.
,
Creutzig
,
T.
, and
Linshaw
,
A.
, “
W-algebras as coset vertex algebras
,” e-print arXiv:1801.03822 [math.QA].
2.
Arakawa
,
T.
and
Jiang
,
C.
, “
Coset vertex operator algebras and W-algebras of A-type
,”
Sci. China Math.
61
,
191
206
(
2018
).
3.
Awata
,
H.
,
Matsuo
,
Y.
,
Odake
,
S.
, and
Shiraishi
,
J.
, “
Excited states of the Calogero-Sutherland model and singular vectors of the Wn algebra
,”
Nucl. Phys. B
449
,
347
374
(
1995
); e-print arXiv:hep-th/9503043.
4.
Bais
,
F.
,
Bouwknegt
,
P.
,
Schoutens
,
K.
, and
Surridge
,
M.
, “
Coset construction for extended Virasoro algebras
,”
Nucl. Phys. B
304
,
371
391
(
1988
).
5.
Bais
,
F.
,
Bouwknegt
,
P.
,
Surridge
,
M.
, and
Schoutens
,
K.
, “
Extensions of the Virasoro algebra constructed from Kac-Moody algebras using higher order Casimir invariants
,”
Nucl. Phys. B
304
,
348
370
(
1988
).
6.
Belavin
,
A.
,
Polyakov
,
M.
, and
Zamolodchikov
,
A.
, “
Infinite conformal symmetry in two-dimensional quantum field theory
,”
Nucl. Phys. B
241
,
333
380
(
1984
).
7.
Blondeau-Fournier
,
O.
,
Mathieu
,
P.
,
Ridout
,
D.
, and
Wood
,
S.
, “
The super-Virasoro singular vectors and Jack superpolynomials relationship revisited
,”
Nucl. Phys. B
913
,
34
63
(
2016
); e-print arXiv:1605.08621 [math-ph].
8.
Blondeau-Fournier
,
O.
,
Mathieu
,
P.
,
Ridout
,
D.
, and
Wood
,
S.
, “
Superconformal minimal models and admissible Jack polynomials
,”
Adv. Math.
314
,
71
123
(
2017
); e-print arXiv:1606.04187 [hep-th].
9.
Bouwknegt
,
P.
,
MacCarthy
,
J.
, and
Pilch
,
K.
, The W3 Algebra. Modules, Semi-Infinite Cohomology and BV Algebras, Lecture Notes in Physics (
Springer
,
Heidelberg
,
1996
).
10.
Bouwknegt
,
P.
and
Schoutens
,
K.
, “
W-symmetry in conformal field theory
,”
Phys. Rep.
223
,
183
276
(
1993
); e-print arXiv:hep-th/9210010.
11.
de Boer
,
J.
and
Tjin
,
T.
, “
The relation between quantum W-algebras and Lie algebras
,”
Commun. Math. Phys.
160
,
317
332
(
1994
); e-print arXiv:hep-th/9302006.
12.
Desrosiers
,
P.
,
Lapointe
,
L.
, and
Mathieu
,
P.
, “
Supersymmetric Calogero-Moser-Sutherland models and Jack superpolynomials
,”
Nucl. Phys. B
606
,
547
582
(
2001
); e-print arXiv:hep-th/0103178.
13.
Desrosiers
,
P.
,
Lapointe
,
L.
, and
Mathieu
,
P.
, “
Superconformal field theory and Jack superpolynomials
,”
J. High Energy Phys.
2012
,
37
; e-print arXiv:1205.0784 [hep-th].
14.
Dotsenko
,
V.
and
Fateev
,
V.
, “
Conformal algebra and multipoint correlation functions in 2D statistical models
,”
Nucl. Phys. B
240
,
312
348
(
1984
).
15.
Fateev
,
V.
and
Zamolodchikov
,
A.
, “
Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ZN-symmetric statistical systems
,”
Sov. Phys. JETP
62
,
215
225
(
1985
), http://www.jetp.ac.ru/cgi-bin/e/index/e/62/2/p215?a=list.
16.
Fateev
,
V.
and
Zamolodchikov
,
A.
, “
Conformal quantum field theory models in two-dimensions having Z3 symmetry
,”
Nucl. Phys. B
280
,
644
660
(
1987
).
17.
Feigin
,
B.
and
Frenkel
,
E.
, “
Quantization of the Drinfeld-Sokolov reduction
,”
Phys. Lett. B
246
,
75
81
(
1990
).
18.
Gaberdiel
,
M.
and
Gopakumar
,
R.
, “
Minimal model holography
,”
J. Phys. A: Math. Theor.
46
,
214002
(
2013
); e-print arXiv:1207.6697 [hep-th].
19.
Goddard
,
P.
,
Kent
,
A.
, and
Olive
,
D.
, “
Virasoro algebras and coset space models
,”
Nucl. Phys. B
152
,
88
92
(
1985
).
20.
Jack
,
H.
, “
A class of symmetric polynomials with a parameter
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math. Phys. Sci.
69
,
1
18
(
1970
-
1971
).
21.
Kato
,
M.
and
Yamada
,
Y.
, “
Missing link between Virasoro and sl(2)^ Kac-Moody algebras
,”
Prog. Theor. Phys. Suppl.
110
,
291
302
(
1992
).
22.
Lukyanov
,
A.
, “
Quantization of the Gel’fand-Dikii brackets
,”
Funct. Anal. Appl.
22
,
255
262
(
1988
).
23.
Macdonald
,
I.
,
Symmetric Functions and Hall Polynomials
, Oxford Mathematical Monographs, 2nd ed. (
Clarendon Press
,
Oxford
,
1995
).
24.
Mimachi
,
K.
and
Yamada
,
Y.
, “
Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials
,”
Commun. Math. Phys.
174
,
447
455
(
1995
).
25.
Ridout
,
D.
and
Wood
,
S.
, “
From Jack polynomials to minimal model spectra
,”
J. Phys. A: Math. Theor.
48
,
045201
(
2015
); e-print arXiv:1409.4847 [hep-th].
26.
Ridout
,
D.
and
Wood
,
S.
, “
Relaxed singular vectors, Jack symmetric functions and fractional level sl^(2) models
,”
Nucl. Phys. B
894
,
621
664
(
2015
); e-print arXiv:1501.07318 [hep-th].
27.
Tarasov
,
V.
and
Varchenko
,
A.
, “
Selberg type integrals associated with sl3
,”
Lett. Math. Phys.
65
,
173
185
(
2003
); e-print arXiv:math/0302148 [math.QA].
28.
Tsuchiya
,
A.
and
Kanie
,
Y.
, “
Fock space representations of Virasoro algebra and intertwining operators
,”
Proc. Jpn. Acad., Ser. A
62
,
12
15
(
1986
).
29.
Tsuchiya
,
A.
and
Kanie
,
Y.
, “
Fock space representations of Virasoro algebra and intertwining operators
,”
Publ. Res. Inst. Math. Sci.
22
,
259
327
(
1986
).
30.
Tsuchiya
,
A.
and
Wood
,
S.
, “
On the extended W-algebra of type sl2 at positive rational level
,”
Int. Math. Res. Not.
2015
,
5357
5435
; e-print arXiv:1302.6435 [math.QA].
31.
Vasiliev
,
M.
, “
Higher-spin gauge theories in four, three and two dimensions
,”
Int. J. Mod. Phys. D
05
,
763
797
(
1996
); e-print arXiv:hep-th/9611024.
32.
Wakimoto
,
M.
and
Yamada
,
H.
, “
Irreducible decompositions of Fock representations of the Virasoro algebra
,”
Lett. Math. Phys.
7
,
513
516
(
1983
).
33.
Warnaar
,
S.
, “
A Selberg integral for the Lie algebra An
,”
Acta Math.
203
,
269
304
(
2009
); e-print arXiv:0708.1193 [math.CA].
34.
Warnaar
,
S.
, “
The sl3 Selberg integral
,”
Adv. Math.
224
,
499
524
(
2010
); e-print arXiv:0901.4176.
35.
Yanagida
,
S.
, “
Singular vectors of N = 1 super Virasoro algebra via Uglov symmetric functions
,” e-print arXiv:1508.06036 [math.QA].
36.
Zamolodchikov
,
A.
, “
Infinite additional symmetries in two-dimensional conformal quantum field theory
,”
Theor. Math. Phys.
65
,
1205
1213
(
1985
).
You do not currently have access to this content.