In this paper, we introduce Lauricella matrix functions of three variables as well as n-variables. We also define the matrix analog of the three variables and Srivastava’s triple hypergeometric functions. We examine the regions of convergence of Lauricella matrix functions and Srivastava’s triple hypergeometric matrix functions and also obtain their integral representations.

1.
Constantine
,
A. G.
and
Muirhead
,
R. J.
, “
Partial differential equations for hypergeometric functions of two argument matrices
,”
J. Multivar. Anal.
2
,
332
338
(
1972
).
2.
Cortés
,
J. C.
,
Jódar
,
L.
,
Solís
,
F. J.
, and
Ku-Carrillo
,
R.
, “
Infinite matrix products and the representation of the matrix Gamma function
,”
Abstr. Appl. Anal.
2015
,
564287
.
3.
Dunford
,
N.
and
Schwartz
,
J.
,
Linear Operators, Part-I
(
Addison-Wesley
,
New York
,
1957
).
4.
Dwivedi
,
R.
and
Sahai
,
V.
, “
On the hypergeometric matrix functions of two variables
,”
Linear Multilinear Algebra
1
(
2017
).
5.
Golub
,
G. H.
and
Van Loan
,
C. F.
,
Matrix Computations
(
Johns Hopkins University Press
,
Baltimore, MD
,
1989
).
6.
Higueras
,
I.
and
Garcia-Celayeta
,
B.
, “
Logarithmic norms for matrix pencils
,”
SIAM J. Matrix Anal. Appl.
20
(
3
),
646
666
(
1999
).
7.
Hu
,
G. D.
and
Liu
,
M.
, “
The weighted logarithmic matrix norm and bounds of the matrix exponential
,”
Linear Algebra Appl.
390
,
145
154
(
2004
).
8.
James
,
A. T.
, “
Special functions of matrix and single argument in statistics
,” in
Theory and Application of Special Functions
, edited by
Askey
,
R.
(
Academic Press
,
New York
,
1975
), pp.
497
520
, Proceedings of an Advanced Seminar, Mathematical Research Center, University of Wisconsin, Madison, Wisconsin, Publication No. 35.
9.
Jódar
,
L.
and
Cortés
,
J. C.
, “
On the hypergeometric matrix function
,” in
Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997)
[
J. Comput. Appl. Math.
99
(
1-2
),
205
217
(
1998
)].
10.
Jódar
,
L.
and
Cortés
,
J. C.
, “
Some properties of Gamma and beta matrix functions
,”
Appl. Math. Lett.
11
(
1
),
89
93
(
1998
).
11.
Lauricella
,
G.
, “
Sulle funzioni ipergeometriche a piú variabili
,”
Rend. Circolo Mat. Palermo
7
,
111
158
(
1893
).
12.
Saran
,
S.
, “
Hypergeometric functions of three variables
,”
Ganita
5
,
71
91
(
1954
).
13.
Sastre
,
J.
and
Jódar
,
L.
, “
Asymptotics of the modified Bessel and the incomplete Gamma matrix functions
,”
Appl. Math. Lett.
16
(
6
),
815
820
(
2003
).
14.
Sastre
,
J.
and
Defez
,
E.
, “
On the asymptotics of Laguerre matrix polynomials for large x and n
,”
Appl. Math. Lett.
19
(
8
),
721
727
(
2006
).
15.
Seaborn
,
J. B.
,
Hypergeometric Functions and Their Applications
(
Springer
,
New York
,
1991
).
16.
Srivastava
,
H. M.
, “
Hypergeometric functions of three variables
,”
Ganita
15
,
97
108
(
1964
).
17.
Srivastava
,
H. M.
, “
Some integrals representing triple hypergeometric functions
,”
Rend. Circolo Mat. Palermo
16
(
2
),
99
115
(
1967
).
18.
Srivastava
,
H. M.
and
Manocha
,
H. L.
,
A Treatise on Generating Functions
(
John Wiley and Sons
,
1984
).
19.
Trefethen
,
L. N.
and
Embree
,
M.
,
Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators
(
Princeton University Press
,
Princeton, NJ
,
2005
).
20.
Van Loan
,
C.
, “
The sensitivity of the matrix exponential
,”
SIAM J. Numer. Anal.
14
(
6
),
971
981
(
1977
).
You do not currently have access to this content.