We introduce a new family of Galilean spacetimes, the Galilean generalized Robertson-Walker spacetimes. This new family is relevant in the context of a generalized Newton-Cartan theory. We study its geometrical structure and analyse the completeness of its inextensible free falling observers. This sort of spacetimes constitutes the local geometric model of a much wider family of spacetimes admitting certain conformal symmetry. Moreover, we find some sufficient geometric conditions which guarantee a global splitting of a Galilean spacetime as a Galilean generalized Robertson-Walker spacetime.
REFERENCES
1.
Aledo
, J. A.
, Romero
, A.
, and Rubio
, R. M.
, “The existence and uniqueness of standard static splitting
,” Classical Quantum Gravity
32
, 105004
(2015
).2.
Alías
, L. J.
, Romero
, A.
, and Sánchez
, M.
, “Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes
,” Gen. Relativ. Gravitation
27
, 71
–84
(1995
).3.
Bernal
, A. N.
, López
, M.
, and Sánchez
, M.
, “Fundamental units of length and time
,” Found. Phys.
32
, 77
–108
(2002
).4.
Bernal
, A. N.
and Sánchez
, M.
, “Leibnizian, Galilean, and Newtonian structures of space-time
,” J. Math. Phys.
44
, 1129
–1149
(2003
).5.
Caballero
, M.
, Romero
, A.
, and Rubio
, R. M.
, “Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field
,” Classical Quantum Gravity
28
, 145009
–145022
(2011
).6.
Candela
, A. M.
, Romero
, A.
, and Sánchez
, M.
, “Completeness of the trajectories of particles coupled to a general force field
,” Arch. Ration. Mech. Anal.
208
, 255
–274
(2013
).7.
Cartan
, E.
, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie)
,” Ann. Sci. Ec. Norm. Super.
40
, 325
–412
(1923
).8.
Cartan
, E.
, “Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (suite)
,” Ann. Sci. Ec. Norm. Super.
41
, 1
–25
(1924
).9.
Flores
, J. L.
and Sánchez
, M.
, “Geodesic connectedness and conjugate points in GRW space-times
,” J. Geom. Phys.
36
, 285
–314
(2000
).10.
Flores
, J. L.
, The Riemannian and Lorentzian Splitting Theorems
, Volume 1 of Atlantis Transactions in Geometry (Springer
, 2017
), pp. 1
–20
.11.
Gutierrez
, M.
and Olea
, B.
, “Global decomposition of a Lorentzian manifold as a generalized Robertson-Walker spacetime
,” Differ. Geom. Appl.
27
, 146
–156
(2009
).12.
Malament
, D. B.
, Topic in the Formulations of General Relativity and Newtonian Gravitation Theory
, Chicago Lectures in Physics (University of Chicago Press
, 2012
).13.
Müler-Hoissen
, F.
, “The cosmological principle and a generalization of Newton’s theory of gravitation
,” Gen. Relativ. Gravitation
15
, 1051
–1066
(1983
).14.
O’Neill
, B.
, Semi–Riemannian Geometry with Applications to Relativity
, Volume 103 of Pure and Applied Mathematics (Academic Press
, New York
, 1983
).15.
Sánchez
, M.
, “On the geometry of generalized Robertson-Walker spacetimes: Geodesics
,” Gen. Relativ. Gravitation
30
, 915
–932
(1998
).16.
Sánchez
, M.
, “On the geometry of generalized Robertson-Walker spacetimes: Curvature and Killing fields
,” J. Geom. Phys.
31
, 1
–15
(1999
).17.
Warner
, F. W.
, Foundations of Differentiable Manifolds and Lie Groups
, Graduate Texts in Mathematics (Springer-Verlag
, 1983
).18.
Zafiris
, E.
, “Irreducible decomposition of Einstein’s equations in spacetimes with symmetries
,” Ann. Phys.
263
, 155
–178
(1998
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.