We introduce a new family of Galilean spacetimes, the Galilean generalized Robertson-Walker spacetimes. This new family is relevant in the context of a generalized Newton-Cartan theory. We study its geometrical structure and analyse the completeness of its inextensible free falling observers. This sort of spacetimes constitutes the local geometric model of a much wider family of spacetimes admitting certain conformal symmetry. Moreover, we find some sufficient geometric conditions which guarantee a global splitting of a Galilean spacetime as a Galilean generalized Robertson-Walker spacetime.

1.
Aledo
,
J. A.
,
Romero
,
A.
, and
Rubio
,
R. M.
, “
The existence and uniqueness of standard static splitting
,”
Classical Quantum Gravity
32
,
105004
(
2015
).
2.
Alías
,
L. J.
,
Romero
,
A.
, and
Sánchez
,
M.
, “
Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes
,”
Gen. Relativ. Gravitation
27
,
71
84
(
1995
).
3.
Bernal
,
A. N.
,
López
,
M.
, and
Sánchez
,
M.
, “
Fundamental units of length and time
,”
Found. Phys.
32
,
77
108
(
2002
).
4.
Bernal
,
A. N.
and
Sánchez
,
M.
, “
Leibnizian, Galilean, and Newtonian structures of space-time
,”
J. Math. Phys.
44
,
1129
1149
(
2003
).
5.
Caballero
,
M.
,
Romero
,
A.
, and
Rubio
,
R. M.
, “
Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field
,”
Classical Quantum Gravity
28
,
145009
145022
(
2011
).
6.
Candela
,
A. M.
,
Romero
,
A.
, and
Sánchez
,
M.
, “
Completeness of the trajectories of particles coupled to a general force field
,”
Arch. Ration. Mech. Anal.
208
,
255
274
(
2013
).
7.
Cartan
,
E.
, “
Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie)
,”
Ann. Sci. Ec. Norm. Super.
40
,
325
412
(
1923
).
8.
Cartan
,
E.
, “
Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (suite)
,”
Ann. Sci. Ec. Norm. Super.
41
,
1
25
(
1924
).
9.
Flores
,
J. L.
and
Sánchez
,
M.
, “
Geodesic connectedness and conjugate points in GRW space-times
,”
J. Geom. Phys.
36
,
285
314
(
2000
).
10.
Flores
,
J. L.
,
The Riemannian and Lorentzian Splitting Theorems
, Volume 1 of Atlantis Transactions in Geometry (
Springer
,
2017
), pp.
1
20
.
11.
Gutierrez
,
M.
and
Olea
,
B.
, “
Global decomposition of a Lorentzian manifold as a generalized Robertson-Walker spacetime
,”
Differ. Geom. Appl.
27
,
146
156
(
2009
).
12.
Malament
,
D. B.
,
Topic in the Formulations of General Relativity and Newtonian Gravitation Theory
, Chicago Lectures in Physics (
University of Chicago Press
,
2012
).
13.
Müler-Hoissen
,
F.
, “
The cosmological principle and a generalization of Newton’s theory of gravitation
,”
Gen. Relativ. Gravitation
15
,
1051
1066
(
1983
).
14.
O’Neill
,
B.
,
Semi–Riemannian Geometry with Applications to Relativity
, Volume 103 of Pure and Applied Mathematics (
Academic Press
,
New York
,
1983
).
15.
Sánchez
,
M.
, “
On the geometry of generalized Robertson-Walker spacetimes: Geodesics
,”
Gen. Relativ. Gravitation
30
,
915
932
(
1998
).
16.
Sánchez
,
M.
, “
On the geometry of generalized Robertson-Walker spacetimes: Curvature and Killing fields
,”
J. Geom. Phys.
31
,
1
15
(
1999
).
17.
Warner
,
F. W.
,
Foundations of Differentiable Manifolds and Lie Groups
, Graduate Texts in Mathematics (
Springer-Verlag
,
1983
).
18.
Zafiris
,
E.
, “
Irreducible decomposition of Einstein’s equations in spacetimes with symmetries
,”
Ann. Phys.
263
,
155
178
(
1998
).
You do not currently have access to this content.