In this paper, we propose a geometric Hamilton-Jacobi theory for systems of implicit differential equations. In particular, we are interested in implicit Hamiltonian systems, described in terms of Lagrangian submanifolds of TT*Q generated by Morse families. The implicit character implies the nonexistence of a Hamiltonian function describing the dynamics. This fact is here amended by a generating family of Morse functions which plays the role of a Hamiltonian. A Hamilton–Jacobi equation is obtained with the aid of this generating family of functions. To conclude, we apply our results to singular Lagrangians by employing the construction of special symplectic structures.

1.
Abraham
,
R.
and
Marsden
,
J. E.
,
Foundations of Mechanics
(
Benjamin/Cummings Publishing Company
,
Reading, Massachusetts
,
1978
).
2.
Anderson
,
J. L.
and
Bergmann
,
P. G.
, “
Constraint in covariant field theories
,”
Phys. Rev.
83
,
1018
1026
(
1951
).
3.
Arnold
,
V. I.
,
Mathematical Methods of Classical Mechanics
, Volume 60 of Graduate Texts in Mathematics (
Springer Science & Business Media
,
1989
).
4.
Barbero-Liñán
,
M.
,
de León
,
M.
, and
de Diego
,
D. M.
, “
Lagrangian submanifolds and the Hamilton–Jacobi equation
,”
Monatsh. Math.
171
,
269
290
(
2013
).
5.
Barone
,
F.
,
Grassini
,
R.
, and
Mendella
,
G.
, “
A unified approach to constrained mechanical systems as implicit differential equations
,”
Ann. Inst. Henri Poincare, Sect. A
70
,
515
546
(
1999
).
6.
Benenti
,
S.
and
Tulczyjew
,
W. M.
, “
The geometrical meaning and globalization of the Hamilton-Jacobi method
,” in
Differential Geometrical Methods in Mathematical Physics
(
Springer Berlin Heidelberg
,
1890
), pp.
9
21
.
7.
Benenti
,
S.
,
Hamiltonian Structures and Generating Families
(
Springer Science & Business Media
,
2011
).
8.
Bergmann
,
P. G.
, “
Quantisierung allgemein-kovarianter Feldtheorien
,”
Helv. Phys. Acta, Suppl.
4
,
79
(
1956
).
9.
Bernardi
,
O.
,
Cardin
,
F.
, and
Siconolfi
,
A.
, “
Cauchy problems for stationary Hamilton-Jacobi equations under mild regularity assumptions
,”
J. Geom. Mech.
1
(
3
),
271
294
(
2009
).
10.
Cardin
,
F.
, “
Morse families and constrained mechanical systems. Generalized hyperelastic materials
,”
Meccanica
26
(
2-3
),
161
167
(
1991
).
11.
Cardin
,
F.
,
Elementary Symplectic Topology and Mechanics
(
Springer
,
2015
).
12.
Cariñena
,
J. F.
,
Gracia
,
X.
,
Marmo
,
G.
,
Martinez
,
E.
,
Muñoz-Lecanda
,
M. C.
, and
Roman-Roy
,
N.
, “
Geometric Hamilton–Jacobi theory
,”
Int. J. Geom. Methods Mod. Phys.
3
(
07
),
1417
1458
(
2006
).
13.
Cariñena
,
J. F.
,
Grabowski
,
J.
,
de Lucas
,
J.
, and
Sardón
,
C.
, “
Lie–Dirac systems and Schwarzian equations
,”
J. Differ. Equations
257
,
2303
2340
(
2014
).
14.
Courant
,
T. J.
, “
Dirac manifolds
,”
Trans. Am. Math. Soc.
319
(
2
),
631
661
(
1990
).
15.
Dacorogna
,
B.
and
Marcellini
,
P.
,
Progress in Nonlinear Differential Equations and Their Applications
(
Springer Science+Business Media, LLC
,
New York
,
1999
).
16.
Davis
,
H. T.
,
Introduction to Nonlinear Differential and Integral Equations
(
Dover publications
,
1962
).
17.
Dirac
,
P. A. M.
, “
Generalized Hamiltonian dynamics
,”
Can. J. Math.
2
,
129
148
(
1950
).
18.
Dirac
,
P. A. M.
,
Lectures in Quantum Mechanics
(
Belfer Graduate School of Science, Yeshiva University
,
New York
,
1967
).
19.
Dominici
,
D.
,
Longhi
,
G.
,
Gomis
,
J.
, and
Pons
,
J. M.
, “
Hamilton–Jacobi theory for constrained systems
,”
J. Math. Phys.
25
(
8
),
2439
2452
(
1984
).
20.
Godbillion
,
C.
,
Géométrie Differentielle et Mécanique Analytique
, Collection Methodes (
Hermann
,
Paris
,
1969
).
21.
Goldstein
,
H.
,
Mecánica Clásica
, 4th ed. (
Aguilar SA Madrid
,
1979
).
22.
Gotay
,
M. J.
and
Nester
,
J. M.
, “
Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem
,”
Ann. Inst. Henri Poincare, Sect. A
30
,
129
142
(
1979
).
23.
Gotay
,
M. J.
and
Nester
,
J. M.
, “
Presymplectic Lagrangian systems. II. The second-order equation problem
,”
Ann. Inst. Henri Poincare, Sect. A
32
,
1
13
(
1980
).
24.
Gotay
,
M. J.
and
Nester
,
J. M.
, “
Generalized constraint algorithm and special presymplectic manifolds
,” in
Geometric Methods in Mathematical Physics: Proceedings of an NSF-CBMS Conference Held at the University of Lowell, Massachusetts, 1979
, Volume 775 of Lecture Notes in Mathematics (
Springer
,
Berlin
,
1980
), pp.
78
104
.
25.
Gotay
,
M. J.
and
Nester
,
J. M.
, “
Apartheid in the Dirac theory of constraints
,”
J. Phys. A: Math. Gen.
17
,
3063
3066
(
1984
).
26.
Gotay
,
M. J.
,
Nester
,
J. M.
, and
Hinds
,
G.
, “
Presymplectic manifolds and the Dirac-Bergmann theory of constraints
,”
J. Math. Phys.
19
,
2388
2399
(
1978
).
27.
Gracia
,
X.
and
Pons
,
J. M.
, “
A generalized geometric framework for constrained systems
,”
Differ. Geom. Appl.
2
(
3
),
223
247
(
1992
).
28.
Hoefkens
,
J.
,
Berz
,
M.
, and
Makino
,
K.
, “
Computing validated solutions of implicit differential equations
,”
Adv. Comput. Math.
19
,
231
253
(
2003
).
29.
Janeczko
,
S.
, “
On implicit Lagrangian differential systems
,” in
Annales Polonici Mathematici
(
Institute of Mathematics Polish Academy of Sciences
,
2000
), Vol. 74, pp.
133
141
.
30.
Janeczko
,
S.
and
Pelletier
,
F.
,
Singularities of Implicit Differential Systems and Maximum Principle
(
Banach Center Publications
,
2004
), Vol. 62, pp.
117
132
.
31.
Kibble
,
T. W.
and
Berkshire
,
F. H.
,
Classical Mechanics
, 5th ed. (
Imperial College Press
,
London
,
2004
).
32.
Leok
,
M.
,
Ohsawa
,
T.
, and
Sosa
,
D.
, “
Hamilton–Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints
,”
J. Math. Phys.
53
(
7
),
072905
(
2012
).
33.
de León
,
M.
and
Rodrigues
,
P. R.
,
Method of Differential Geometry in Analytical Mechanics
, Volume 158 of Mathematical Studies (
North–Holland
,
1989
).
34.
de León
,
M.
,
Iglesias-Ponte
,
D.
, and
de Diego
,
D. M.
, “
Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems
,”
J. Phys. A: Math. Gen.
41
,
015205
(
2008
).
35.
de León
,
M.
,
Marrero
,
J. C.
, and
Martín de Diego
,
D.
, “
Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics
,”
J. Geom. Mech.
2
,
159
198
(
2010
).
36.
de León
,
M.
,
Marrero
,
J. C.
,
de Diego
,
D. M.
, and
Vaquero
,
M.
, “
On the Hamilton-Jacobi theory for singular Lagrangian systems
,”
J. Math. Phys.
54
(
3
),
032902
(
2013
).
37.
de León
,
M.
and
Sardón
,
C.
, “
Cosymplectic and contact structures to resolve time-dependent and dissipative Hamiltonian systems
,”
J. Phys. A: Math. Theor.
50
,
255205
(
2017
); e-print arXiv:1612.06224.
38.
de León
,
M.
and
Sardón
,
C.
, “
A geometric Hamilton–Jacobi theory for Nambu–Poisson structures
,”
J. Math. Phys.
58
,
033508
(
2017
).
39.
de León
,
M.
,
de Diego
,
D. M.
, and
Vaquero
,
M.
, “
Hamilton–Jacobi theory, symmetries and coisotropic reduction
,”
J. Math. Pures Appl.
107
(
5
),
591
614
(
2017
).
40.
Libermann
,
P.
and
Marle
,
C. M.
,
Symplectic Geometry and Analytical Mechanics
(
Springer Science & Business Media
,
2012
), Vol. 35.
41.
Marmo
,
G.
,
Mendella
,
G.
, and
Tulczyjew
,
W. M.
, “
Constrained Hamiltonian systems as implicit differential equations
,”
J. Phys. A: Math. Gen.
30
(
1
),
277
(
1977
).
42.
Marmo
,
G.
,
Mendella
,
G.
, and
Tulczyjew
,
W. M.
, “
Symmetries and constants of the motion for dynamics in implicit form
,”
Ann. I.H.P.: Phys. Theor.
57
,
147
166
(
1992
).
43.
Marmo
,
G.
,
Morandi
,
G.
, and
Mukunda
,
N.
, “
A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations
,”
Riv. Nuovo Cimento
13
(
8
),
1
74
(
1990
).
44.
Mendella
,
G.
,
Marmo
,
G.
, and
Tulczyjew
,
W. M.
, “
Integrability of implicit differential equations
,”
J. Phys. A: Math. Gen.
28
(
1
),
149
(
1995
).
45.
Menzio
,
M. R.
and
Tulczyjew
,
W. M.
, “
Infinitesimal symplectic relations and generalized Hamiltonian dynamics
,”
Ann. Inst. Henri Poincare, Sect. A
28
,
249
367
(
1978
).
46.
Munoz-Lecanda
,
M. C.
and
Roman-Roy
,
N.
, “
Implicit quasilinear differential systems: A geometrical approach
,”
Elect. J. Differ. Equations
1999
(
10
),
1
33
(
1999
).
47.
Rabier
,
P. J.
and
Rheinboldt
,
W. C.
, “
A geometric treatment of implicit differential-algebraic equations
,”
J. Differ. Equations
109
,
110
146
(
1994
).
48.
Takens
,
F.
,
Implicit Differential Equations: Some Open Problems in Singularités d’Applications Différentiables
(
Springer Berlin Heidelberg
,
1976
), pp.
237
253
.
49.
Tulczyjew
,
W. M.
, “
Hamiltonian systems, Lagrangian systems and the Legendre transformation
,”
Sympl. Math.
16
,
247
258
(
1974
).
50.
Tulczyjew
,
W. M.
, A simplectic formulation of relativistic particle dynamics, No. MPI-PAE/ASTRO–103,
Max-Planck-Institut fur Physik und Astrophysik
,
1976
.
51.
Tulczyjew
,
W. M.
, “
The Legendre transformation
,”
Ann. I.H.P.: Phys. Theor.
27
,
101
114
(
1977
).
52.
Tulczyjew
,
W. M.
, “
A symplectic formulation of particle dynamics
,” in
Differential Geometrical Methods in Mathematical Physics
(
Springer Berlin Heidelberg
,
1977
), pp.
457
463
.
53.
Tulczyjew
,
W. M.
and
Urbanski
,
P.
,
Homogeneous Lagrangian Systems, Gravitation, Electromagnetism and Geometric Structures
(
Pitagora Editrice
,
1996
), pp.
91
136
.
54.
Tulczyjew
,
W. M.
, “
A slow and careful Legendre transformation for singular Lagrangians
,”
Acta Phys. Pol., B
30
,
2909
2978
(
1999
).
55.
Tulczyjew
,
W. M.
,
Geometric Formulations of Physical Theories: Statics and Dynamics of Mechanical Systems
(
American Institute of Physics
,
1989
), Vol. 11.
56.
Urbanski
,
P.
,
Double Vector Bundles in Classical Mechanics
(
Rend. Sem. Matem.
,
Torino
,
1996
), Vol. 54.
57.
Weinstein
,
A.
,
Lectures on Symplectic Manifolds
, CBMS Regional Conference Series in Mathematics (
American Mathematical Society
,
1977
), Vol. 29, p.
48
.
You do not currently have access to this content.