In this paper, we propose a geometric Hamilton-Jacobi theory for systems of implicit differential equations. In particular, we are interested in implicit Hamiltonian systems, described in terms of Lagrangian submanifolds of TT*Q generated by Morse families. The implicit character implies the nonexistence of a Hamiltonian function describing the dynamics. This fact is here amended by a generating family of Morse functions which plays the role of a Hamiltonian. A Hamilton–Jacobi equation is obtained with the aid of this generating family of functions. To conclude, we apply our results to singular Lagrangians by employing the construction of special symplectic structures.
REFERENCES
1.
Abraham
, R.
and Marsden
, J. E.
, Foundations of Mechanics
(Benjamin/Cummings Publishing Company
, Reading, Massachusetts
, 1978
).2.
Anderson
, J. L.
and Bergmann
, P. G.
, “Constraint in covariant field theories
,” Phys. Rev.
83
, 1018
–1026
(1951
).3.
Arnold
, V. I.
, Mathematical Methods of Classical Mechanics
, Volume 60 of Graduate Texts in Mathematics (Springer Science & Business Media
, 1989
).4.
Barbero-Liñán
, M.
, de León
, M.
, and de Diego
, D. M.
, “Lagrangian submanifolds and the Hamilton–Jacobi equation
,” Monatsh. Math.
171
, 269
–290
(2013
).5.
Barone
, F.
, Grassini
, R.
, and Mendella
, G.
, “A unified approach to constrained mechanical systems as implicit differential equations
,” Ann. Inst. Henri Poincare, Sect. A
70
, 515
–546
(1999
).6.
Benenti
, S.
and Tulczyjew
, W. M.
, “The geometrical meaning and globalization of the Hamilton-Jacobi method
,” in Differential Geometrical Methods in Mathematical Physics
(Springer Berlin Heidelberg
, 1890
), pp. 9
–21
.7.
Benenti
, S.
, Hamiltonian Structures and Generating Families
(Springer Science & Business Media
, 2011
).8.
Bergmann
, P. G.
, “Quantisierung allgemein-kovarianter Feldtheorien
,” Helv. Phys. Acta, Suppl.
4
, 79
(1956
).9.
Bernardi
, O.
, Cardin
, F.
, and Siconolfi
, A.
, “Cauchy problems for stationary Hamilton-Jacobi equations under mild regularity assumptions
,” J. Geom. Mech.
1
(3
), 271
–294
(2009
).10.
Cardin
, F.
, “Morse families and constrained mechanical systems. Generalized hyperelastic materials
,” Meccanica
26
(2-3
), 161
–167
(1991
).11.
Cardin
, F.
, Elementary Symplectic Topology and Mechanics
(Springer
, 2015
).12.
Cariñena
, J. F.
, Gracia
, X.
, Marmo
, G.
, Martinez
, E.
, Muñoz-Lecanda
, M. C.
, and Roman-Roy
, N.
, “Geometric Hamilton–Jacobi theory
,” Int. J. Geom. Methods Mod. Phys.
3
(07
), 1417
–1458
(2006
).13.
Cariñena
, J. F.
, Grabowski
, J.
, de Lucas
, J.
, and Sardón
, C.
, “Lie–Dirac systems and Schwarzian equations
,” J. Differ. Equations
257
, 2303
–2340
(2014
).14.
Courant
, T. J.
, “Dirac manifolds
,” Trans. Am. Math. Soc.
319
(2
), 631
–661
(1990
).15.
Dacorogna
, B.
and Marcellini
, P.
, Progress in Nonlinear Differential Equations and Their Applications
(Springer Science+Business Media, LLC
, New York
, 1999
).16.
Davis
, H. T.
, Introduction to Nonlinear Differential and Integral Equations
(Dover publications
, 1962
).17.
Dirac
, P. A. M.
, “Generalized Hamiltonian dynamics
,” Can. J. Math.
2
, 129
–148
(1950
).18.
Dirac
, P. A. M.
, Lectures in Quantum Mechanics
(Belfer Graduate School of Science, Yeshiva University
, New York
, 1967
).19.
Dominici
, D.
, Longhi
, G.
, Gomis
, J.
, and Pons
, J. M.
, “Hamilton–Jacobi theory for constrained systems
,” J. Math. Phys.
25
(8
), 2439
–2452
(1984
).20.
Godbillion
, C.
, Géométrie Differentielle et Mécanique Analytique
, Collection Methodes (Hermann
, Paris
, 1969
).21.
22.
Gotay
, M. J.
and Nester
, J. M.
, “Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem
,” Ann. Inst. Henri Poincare, Sect. A
30
, 129
–142
(1979
).23.
Gotay
, M. J.
and Nester
, J. M.
, “Presymplectic Lagrangian systems. II. The second-order equation problem
,” Ann. Inst. Henri Poincare, Sect. A
32
, 1
–13
(1980
).24.
Gotay
, M. J.
and Nester
, J. M.
, “Generalized constraint algorithm and special presymplectic manifolds
,” in Geometric Methods in Mathematical Physics: Proceedings of an NSF-CBMS Conference Held at the University of Lowell, Massachusetts, 1979
, Volume 775 of Lecture Notes in Mathematics (Springer
, Berlin
, 1980
), pp. 78
–104
.25.
Gotay
, M. J.
and Nester
, J. M.
, “Apartheid in the Dirac theory of constraints
,” J. Phys. A: Math. Gen.
17
, 3063
–3066
(1984
).26.
Gotay
, M. J.
, Nester
, J. M.
, and Hinds
, G.
, “Presymplectic manifolds and the Dirac-Bergmann theory of constraints
,” J. Math. Phys.
19
, 2388
–2399
(1978
).27.
Gracia
, X.
and Pons
, J. M.
, “A generalized geometric framework for constrained systems
,” Differ. Geom. Appl.
2
(3
), 223
–247
(1992
).28.
Hoefkens
, J.
, Berz
, M.
, and Makino
, K.
, “Computing validated solutions of implicit differential equations
,” Adv. Comput. Math.
19
, 231
–253
(2003
).29.
Janeczko
, S.
, “On implicit Lagrangian differential systems
,” in Annales Polonici Mathematici
(Institute of Mathematics Polish Academy of Sciences
, 2000
), Vol. 74, pp. 133
–141
.30.
Janeczko
, S.
and Pelletier
, F.
, Singularities of Implicit Differential Systems and Maximum Principle
(Banach Center Publications
, 2004
), Vol. 62, pp. 117
–132
.31.
Kibble
, T. W.
and Berkshire
, F. H.
, Classical Mechanics
, 5th ed. (Imperial College Press
, London
, 2004
).32.
Leok
, M.
, Ohsawa
, T.
, and Sosa
, D.
, “Hamilton–Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints
,” J. Math. Phys.
53
(7
), 072905
(2012
).33.
de León
, M.
and Rodrigues
, P. R.
, Method of Differential Geometry in Analytical Mechanics
, Volume 158 of Mathematical Studies (North–Holland
, 1989
).34.
de León
, M.
, Iglesias-Ponte
, D.
, and de Diego
, D. M.
, “Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems
,” J. Phys. A: Math. Gen.
41
, 015205
(2008
).35.
de León
, M.
, Marrero
, J. C.
, and Martín de Diego
, D.
, “Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics
,” J. Geom. Mech.
2
, 159
–198
(2010
).36.
de León
, M.
, Marrero
, J. C.
, de Diego
, D. M.
, and Vaquero
, M.
, “On the Hamilton-Jacobi theory for singular Lagrangian systems
,” J. Math. Phys.
54
(3
), 032902
(2013
).37.
de León
, M.
and Sardón
, C.
, “Cosymplectic and contact structures to resolve time-dependent and dissipative Hamiltonian systems
,” J. Phys. A: Math. Theor.
50
, 255205
(2017
); e-print arXiv:1612.06224.38.
de León
, M.
and Sardón
, C.
, “A geometric Hamilton–Jacobi theory for Nambu–Poisson structures
,” J. Math. Phys.
58
, 033508
(2017
).39.
de León
, M.
, de Diego
, D. M.
, and Vaquero
, M.
, “Hamilton–Jacobi theory, symmetries and coisotropic reduction
,” J. Math. Pures Appl.
107
(5
), 591
–614
(2017
).40.
Libermann
, P.
and Marle
, C. M.
, Symplectic Geometry and Analytical Mechanics
(Springer Science & Business Media
, 2012
), Vol. 35.41.
Marmo
, G.
, Mendella
, G.
, and Tulczyjew
, W. M.
, “Constrained Hamiltonian systems as implicit differential equations
,” J. Phys. A: Math. Gen.
30
(1
), 277
(1977
).42.
Marmo
, G.
, Mendella
, G.
, and Tulczyjew
, W. M.
, “Symmetries and constants of the motion for dynamics in implicit form
,” Ann. I.H.P.: Phys. Theor.
57
, 147
–166
(1992
).43.
Marmo
, G.
, Morandi
, G.
, and Mukunda
, N.
, “A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations
,” Riv. Nuovo Cimento
13
(8
), 1
–74
(1990
).44.
Mendella
, G.
, Marmo
, G.
, and Tulczyjew
, W. M.
, “Integrability of implicit differential equations
,” J. Phys. A: Math. Gen.
28
(1
), 149
(1995
).45.
Menzio
, M. R.
and Tulczyjew
, W. M.
, “Infinitesimal symplectic relations and generalized Hamiltonian dynamics
,” Ann. Inst. Henri Poincare, Sect. A
28
, 249
–367
(1978
).46.
Munoz-Lecanda
, M. C.
and Roman-Roy
, N.
, “Implicit quasilinear differential systems: A geometrical approach
,” Elect. J. Differ. Equations
1999
(10
), 1
–33
(1999
).47.
Rabier
, P. J.
and Rheinboldt
, W. C.
, “A geometric treatment of implicit differential-algebraic equations
,” J. Differ. Equations
109
, 110
–146
(1994
).48.
Takens
, F.
, Implicit Differential Equations: Some Open Problems in Singularités d’Applications Différentiables
(Springer Berlin Heidelberg
, 1976
), pp. 237
–253
.49.
Tulczyjew
, W. M.
, “Hamiltonian systems, Lagrangian systems and the Legendre transformation
,” Sympl. Math.
16
, 247
–258
(1974
).50.
Tulczyjew
, W. M.
, A simplectic formulation of relativistic particle dynamics, No. MPI-PAE/ASTRO–103, Max-Planck-Institut fur Physik und Astrophysik
, 1976
.51.
Tulczyjew
, W. M.
, “The Legendre transformation
,” Ann. I.H.P.: Phys. Theor.
27
, 101
–114
(1977
).52.
Tulczyjew
, W. M.
, “A symplectic formulation of particle dynamics
,” in Differential Geometrical Methods in Mathematical Physics
(Springer Berlin Heidelberg
, 1977
), pp. 457
–463
.53.
Tulczyjew
, W. M.
and Urbanski
, P.
, Homogeneous Lagrangian Systems, Gravitation, Electromagnetism and Geometric Structures
(Pitagora Editrice
, 1996
), pp. 91
–136
.54.
Tulczyjew
, W. M.
, “A slow and careful Legendre transformation for singular Lagrangians
,” Acta Phys. Pol., B
30
, 2909
–2978
(1999
).55.
Tulczyjew
, W. M.
, Geometric Formulations of Physical Theories: Statics and Dynamics of Mechanical Systems
(American Institute of Physics
, 1989
), Vol. 11.56.
Urbanski
, P.
, Double Vector Bundles in Classical Mechanics
(Rend. Sem. Matem.
, Torino
, 1996
), Vol. 54.57.
Weinstein
, A.
, Lectures on Symplectic Manifolds
, CBMS Regional Conference Series in Mathematics (American Mathematical Society
, 1977
), Vol. 29, p. 48
.© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.