The Mars-Simon tensor (MST), which, e.g., plays a crucial role to provide gauge invariant characterizations of the Kerr-NUT-(A)(dS) family, satisfies a Bianchi-like equation. In this paper, we analyze this equation in close analogy to the Bianchi equation, in particular it will be shown that the constraints are preserved supposing that a generalized Buchdahl condition holds. This permits the systematic construction of solutions to this equation in terms of a well-posed Cauchy problem. A particular emphasis lies on the asymptotic Cauchy problem, where data are prescribed on a space-like I (i.e., for > 0). In contrast to the Bianchi equation, the MST equation is of Fuchsian type at I, for which existence and uniqueness results are derived.

1.
Alexakis
,
S.
,
Ionescu
,
A. D.
, and
Klainerman
,
S.
, “
Uniqueness of smooth stationary black holes in vacuum: Small perturbations of the Kerr spaces
,”
Commun. Math. Phys.
299
,
89
127
(
2010
).
2.
Ames
,
E.
,
Beyer
,
F.
,
Isenberg
,
J.
, and
LeFloch
,
P. G.
, “
Quasilinear hyperbolic Fuchsian systems and AVTD behavior in T2-symmetric vacuum spacetimes
,”
Ann. Henri Poincaré
14
(
6
),
1445
1523
(
2013
).
3.
Ames
,
E.
,
Beyer
,
F.
,
Isenberg
,
J.
, and
LeFloch
,
P. G.
, “
Quasilinear symmetric hyperbolic Fuchsian systems in several space dimensions
,” in
Complex Analysis and Dynamical Systems V
, edited by
Agranovsky
,
M.
,
Ben-Artzi
,
M.
,
Galloway
,
G. J.
,
Karp
,
L.
,
Maz’ya
,
V.
,
Reich
,
S.
,
Shoikhet
,
D.
,
Weinstein
,
G.
, and
Zalcman
,
L.
(
American Mathematical Society
,
Providence, RI
,
2013
).
4.
Ames
,
E.
,
Beyer
,
F.
,
Isenberg
,
J.
, and
LeFloch
,
P. G.
, “
A class of solutions to the Einstein equations with AVTD behavior in generalized wave gauges
,”
J. Geom. Phys.
121
,
42
71
(
2017
).
5.
Andersson
,
L.
and
Rendall
,
A. D.
, “
Quiescent cosmological singularities
,”
Commun. Math. Phys.
218
(
3
),
479
511
(
2001
).
6.
Beig
,
R.
and
Chruściel
,
P. T.
, “
Shielding linearised gravity
,”
Phys. Rev. D
95
,
064063
(
2017
).
7.
Beyer
,
F.
and
LeFloch
,
P. G.
, “
Second-order hyperbolic Fuchsian systems and applications
,”
Classical Quantum Gravity
27
(
24
),
245012
(
2010
).
8.
Beyer
,
F.
and
LeFloch
,
P. G.
, “
Second-order hyperbolic Fuchsian systems: Asymptotic behavior of geodesics in Gowdy spacetimes
,”
Phys. Rev. D
84
(
8
),
084036
(
2011
).
9.
Beyer
,
F.
and
Hennig
,
J.
, “
Smooth Gowdy-symmetric generalized Taub-NUT solutions
,”
Classical Quantum Gravity
29
,
245017
(
2012
).
10.
Beyer
,
F.
and
LeFloch
,
P. G.
, “
Self-gravitating fluid flows with Gowdy symmetry near cosmological singularities
,”
Commun. Partial Differ. Equations
42
(
8
),
1199
1248
(
2017
).
11.
Buchdahl
,
H. A.
, “
On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field
,”
Nuovo Cimento
10
,
96
103
(
1958
).
12.
Choquet-Bruhat
,
Y.
and
Isenberg
,
J.
, “
Half polarized U(1)-symmetric vacuum spacetimes with AVTD behavior
,”
J. Geom. Phys.
56
(
8
),
1199
1214
(
2006
).
13.
Chruściel
,
P. T.
, “
The geometry of black holes
,” lecture notes,
2015
, http://homepage.univie.ac.at/piotr.chrusciel/teaching/BlackHoles/BlackHolesViennaJanuary2015.pdf.
14.
Claudel
,
C. M.
and
Newman
,
K. P.
, “
The Cauchy problem for quasi-linear hyperbolic evolution problems with a singularity in the time
,”
Proc. R. Soc. A
454
(
1972
),
1073
1107
(
1998
).
15.
Damour
,
T.
,
Henneaux
,
M.
,
Rendall
,
A. D.
, and
Weaver
,
M.
, “
Kasner-like behaviour for subcritical Einstein-matter systems
,”
Ann. Henri Poincaré
3
(
6
),
1049
1111
(
2002
).
16.
Friedrich
,
H.
, “
Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant
,”
J. Geom. Phys.
3
,
101
117
(
1986
).
17.
Friedrich
,
H.
, “
Conformal Einstein evolution
,” in
The Conformal Structure of Space-time: Geometry, Analysis, Numerics
, edited by
Frauendiener
,
J.
and
Friedrich
,
H.
(
Springer
,
Berlin, Heidelberg
,
2002
), pp.
1
50
.
18.
Friedrich
,
H.
and
Rendall
,
A. D.
, “
The Cauchy problem for the Einstein equations
,” in
Einstein’s Field Equations and Their Physical Implications
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2000
), pp.
127
223
.
19.
Henneaux
,
M.
,
Persson
,
D.
, and
Spindel
,
P.
, “
Spacelike singularities and hidden symmetries of gravity
,”
Living Rev. Relativ.
11
(
1
),
1
(
2008
).
20.
Hintz
,
P.
and
Vasy
,
A.
, “
The global non-linear stability of the Kerr-de Sitter family of black holes
,” e-print arXiv:1606.04014 [math.DG] (
2016
).
21.
Ionescu
,
A. D.
and
Klainerman
,
S.
, “
On the uniqueness of smooth, stationary black holes in vacuum
,”
Inventiones Math.
175
,
35
102
(
2009
).
22.
Isenberg
,
J.
and
Kichenassamy
,
S.
, “
Asymptotic behavior in polarized T2-symmetric vacuum space–times
,”
J. Math. Phys.
40
(
1
),
340
(
1999
).
23.
Isenberg
,
J.
and
Moncrief
,
V.
, “
Asymptotic behaviour in polarized and half-polarized U(1) symmetric vacuum spacetimes
,”
Classical Quantum Gravity
19
(
21
),
5361
(
2002
).
24.
Israel
,
W.
,
Differential Forms in General Relativity
, Communications of the Dublin Institute for Advanced Studies: Series A Vol. 19 (
Dublin Institute for Advanced Studies
,
1970
), pp.
1
100
.
25.
Mars
,
M.
, “
A spacetime characterization of the Kerr metric
,”
Classical Quantum Gravity
16
,
2507
2523
(
1999
).
26.
Mars
,
M.
, “
Uniqueness properties of the Kerr metric
,”
Classical Quantum Gravity
17
,
3353
3373
(
2000
).
27.
Mars
,
M.
,
Paetz
,
T.-T.
,
Senovilla
,
J. M. M.
, and
Simon
,
W.
, “
Characterization of (asymptotically) Kerr-de Sitter-like spacetimes at null infinity
,”
Classical Quantum Gravity
33
,
155001
(
2016
).
28.
Mars
,
M.
and
Senovilla
,
J. M. M.
, “
A spacetime characterization of the Kerr-NUT-(A)de Sitter and related metrics
,”
Ann. Henri Poincaré
16
,
1509
1550
(
2015
).
29.
Mars
,
M.
and
Senovilla
,
J. M. M.
, “
Spacetime characterizations of Λ-vacuum metrics with a null Killing 2-form
,”
Classical Quantum Gravity
33
,
195004
(
2016
).
30.
Paetz
,
T.-T.
, “
KIDs prefer special cones
,”
Classical Quantum Gravity
31
,
085007
(
2014
).
31.
Paetz
,
T.-T.
, “
Killing initial data on space-like conformal boundaries
,”
J. Geom. Phys.
106
,
51
69
(
2016
).
32.
Paetz
,
T.-T.
, “
Algorithmic characterization results for the Kerr-NUT-(A)dS space-time. I. A space-time approach
,”
J. Math. Phys.
58
,
042501
(
2017
).
33.
Penrose
,
R.
, “
Asymptotic properties of fields and space-time
,”
Phys. Rev. Lett.
10
,
66
68
(
1963
).
34.
Penrose
,
R.
, “
Zero rest-mass fields including gravitation: Asymptotic behavior
,”
Proc. R. Soc. A
284
,
159
203
(
1965
).
35.
Rendall
,
A. D.
, “
Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity
,”
Classical Quantum Gravity
17
(
16
),
3305
3316
(
2000
).
36.
Ringström
,
H.
,
The Cauchy Problem in General Relativity
, ESI Lectures in Mathematics and Physics (
European Mathematical Society
,
Zürich, Switzerland
,
2009
).
37.
Simon
,
W.
, “
Characterizations of the Kerr metric
,”
Gen. Relativ. Gravitation
16
,
465
476
(
1984
).
38.
Wald
,
R. M.
,
General Relativity
(
The University of Chicago Press
,
Chicago, London
,
1984
).
39.
Wald
,
R. M.
, “
Spin-two fields and general covariance
,”
Phys. Rev. D
33
,
3613
3625
(
1986
).
You do not currently have access to this content.