We consider locally gauge-invariant lattice quantum field theory models with locally scaled Wilson-Fermi fields in d = 1, 2, 3, 4 spacetime dimensions. The use of scaled fermions preserves Osterwalder-Seiler positivity and the spectral content of the models (the decay rates of correlations are unchanged in the infinite lattice). In addition, it also results in less singular, more regular behavior in the continuum limit. Precisely, we treat general fermionic gauge and purely fermionic lattice models in an imaginary-time functional integral formulation. Starting with a hypercubic finite lattice Λ(aZ)d, a ∈ (0, 1], and considering the partition function of non-Abelian and Abelian gauge models (the free fermion case is included) neglecting the pure gauge interactions, we obtain stability bounds uniformly in the lattice spacing a ∈ (0, 1]. These bounds imply, at least in the subsequential sense, the existence of the thermodynamic (Λ(aZ)d) and the continuum (a 0) limits. Specializing to the U(1) gauge group, the known non-intersecting loop expansion for the d = 2 partition function is extended to d = 3 and the thermodynamic limit of the free energy is shown to exist with a bound independent of a ∈ (0, 1]. In the case of scaled free Fermi fields (corresponding to a trivial gauge group with only the identity element), spectral representations are obtained for the partition function, free energy, and correlations. The thermodynamic and continuum limits of the free fermion free energy are shown to exist. The thermodynamic limit of n-point correlations also exist with bounds independent of the point locations and a ∈ (0, 1], and with no n! dependence. Also, a time-zero Hilbert-Fock space is constructed, as well as time-zero, spatially pointwise scaled fermion creation operators which are shown to be norm bounded uniformly in a ∈ (0, 1]. The use of our scaled fields since the beginning allows us to extract and isolate the singularities of the free energy when a 0.

1.
J.
Glimm
and
A.
Jaffe
,
Quantum Physics: A Functional Integral Point of View
(
Springer Verlag
,
New York
,
1986
).
2.
B.
Simon
,
The P(ϕ)2 Euclidean (Quantum) Field Theory
(
American Mathematical Society
,
Providence
,
1996
).
3.
J.
Dimock
,
Quantum Mechanics and Quantum Field Theory: A Mathematical Primer
(
Cambridge University Press
,
Cambridge
,
2011
).
4.
E.
Seiler
,
Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics
, Lecture Notes in Physics 159 (
Springer
,
New York
,
1982
).
5.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
World Scientific Publishing Co.
,
Singapore
,
1999
).
6.
B.
Simon
,
Statistical Mechanics of Lattice Models
(
Princeton University Press
,
Princeton
,
1994
).
7.
V.
Rivasseau
,
From Perturbative to Constructive Renormalization
(
Princeton University Press
,
Princeton
,
1991
).
8.
G.
Benfatto
and
G.
Gallavotti
,
Renormalization Group
(
Princeton University Press
,
Princeton
,
1995
).
9.
R.
Fernández
,
J.
Fröhlich
, and
A. D.
Sokal
,
Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory
(
Springer
,
New York
,
1992
).
10.
D.
Brydges
and
H.-T.
Yau
, “
Grad-ϕ perturbations of massless Gaussian fields
,”
Commun. Math. Phys.
129
,
351
392
(
1990
).
11.
J.
Dimock
, “
The renormalization group according to Balaban. I. Small fields
,”
Rev. Math. Phys.
25
,
1330010
(
2013
);
J.
Dimock
The renormalization group according to Balaban. II. Large fields
,”
J. Math. Phys.
54
,
092301
(
2013
);
J.
Dimock
The renormalization group according to Balaban. III. Convergence
,”
Ann. Henri Poincare
15
,
2133
2175
(
2014
).
12.
T.
Balaban
, “
Large field renormalization. II
,”
Commun. Math. Phys.
122
,
355
392
(
1989
), and references therein.
13.
T.
Spencer
, “
The Decay of the Bethe-Salpeter Kernel inP(ϕ)2 Quantum Field Models
,”
Commun. Math. Phys.
44
,
143
164
(
1975
);
T.
Spencer
and
F.
Zirilli
, “
Scattering States and Bound States in λP(φ)2 Models
,”
Commun. Math. Phys.
49
,
1
16
(
1976
).
14.
P. A.
Faria da Veiga
and
M.
O’Carroll
, “
Eightfold way from dynamical first principles in strongly coupled lattice quantum chromodynamics
,”
J. Math. Phys.
49
,
042303
(
2008
).
15.
A.
Francisco Neto
,
M.
O’Carroll
, and
P. A.
Faria da Veiga
, “
Mesonic eightfold way from dynamics and confinement in strongly coupled lattice quantum chromodynamics
,”
J. Math. Phys.
49
,
072301
(
2008
).
16.
P. A.
Faria da Veiga
,
M.
O’Carroll
, and
J. C.
Valencia Alvites
,
J. Math. Phys.
57
,
032303
(
2016
).
17.
M.
O’Carroll
,
P. A.
Faria da Veiga
, and
A.
Francisco Neto
, “
Analytic binding energies for two-baryon bound states in 2 + 1 strongly coupled lattice QCD with two-flavors
,”
Commun. Math. Phys.
321
,
249
282
(
2013
).
18.
R. S.
Schor
, “
Existence of glueballs in strongly coupled lattice gauge theories
,”
Nucl. Phys. B
222
,
71
82
(
1983
);
R. S.
Schor
The energy-momentum spectrum of strongly coupled lattice gauge theories
Nucl. Phys. B
231
,
321
334
(
1984
).
19.
S.
Durr
 et al., “
Ab-initio determination of light hadron masses
,”
Science
322
,
1224
1227
(
2008
), and references cited therein.
20.
K.
Wilson
, in
New Phenomena in Subnuclear Physics: Part A
, edited by
A.
Zichichi
(
Plenum Press
,
NY
,
1977
).
21.
C.
Gattringer
and
C. B.
Lang
,
Quantum Chromodynamics on the Lattice: An Introductory Presentation
, Lecture Notes in Physics 788 (
Springer
,
New York
,
2010
).
22.
F. A.
Berezin
,
The Method of Second Quantization
(
Academic Press
,
NY
,
1966
).
23.
B.
Simon
,
Representations of Finite and Compact Groups
(
American Mathematical Society
,
Providence
,
1996
).
24.
J.
Dimock
, “
Ultraviolet regularity of QED in d = 3
,” e-print arXiv:1512.04373v2 (
2016
).
25.
M.
O’Carroll
, “
Lattice scaled Bose fields and gauge interacting models: Stability and regularity
,”
J. Math. Phys.
(submitted).
26.
K.
Gawedzki
and
A.
Kupiainen
, “
Gross-Neveu model through convergent perturbation expansions
,”
Commun. Math. Phys.
102
,
1
30
(
1985
).
27.
J.
Feldman
,
J.
Magnen
,
V.
Rivasseau
, and
R.
Sénéor
, “
A renormalizable field Theory: The massive Gross-Neveu model in two dimensions
,”
Commun. Math. Phys.
103
,
67
103
(
1986
).
28.
P. A.
Faria da Veiga
and
M.
O’Carroll
, “
Generating functions for lattice gauge models with scaled fermions and bosons
,”
J. Math. Phys.
(submitted).
29.
A.
Jaffe
and
B.
Janssens
, “
Reflection positivity doubles
,”
J. Funct. Analysis
272
,
3506
3557
(
2017
).
30.
M.
Salmhofer
, “
Equivalence of the strongly coupled lattice Schwinger model and the eight-vertex model
,”
Nucl. Phys. B
362
,
641
648
(
1991
).
31.
N.
Kawamoto
and
J.
Smit
, “
Effective Lagrangian and dynamical symmetry breaking in strongly coupled lattice QCD
,”
Nucl. Phys. B
192
,
100
124
(
1981
).
32.
J.
Hoek
,
N.
Kawamoto
, and
J.
Smit
, “
Baryons in the effective Lagrangian of strongly coupled lattice QCD
,”
Nucl. Phys. B
199
,
495
522
(
1982
).
33.
H.
Kluberg-Stern
,
A.
Morel
, and
B.
Petersson
, “
Spectrum of lattice gauge theories with fermions from a 1/d expansion at strong coupling
,”
Nucl. Phys. B
215
,
527
554
(
1982
).
34.
P.
Rossi
and
U.
Wolf
, “
Lattice QCD with fermions at strong coupling: A dimer system
,”
Nucl. Phys. B
248
,
105
122
(
1984
).
35.
M.
Creutz
, “
On invariant integration over SU(N)
,”
J. Math. Phys.
19
,
2043
2046
(
1978
).
36.
M.
Creutz
,
Quarks, Gluons and Lattices
(
Cambridge University Press
,
Cambridge
,
1983
).
37.
S. J.
Summers
, in
Fundamentals of Physics, Encyclopedia of Life Support Systems, UNESCO
(Eolss Publishers, Oxford, 2012); e-print arXiv:1203.3991v2 (
2016
).
38.
F. R.
Gantmacher
,
Theory of Matrices
(
Chelsea Publishing Company
,
New York
,
1959
), Vol. 2.
39.
K.
Osterwalder
and
E.
Seiler
, “
Gauge field theories on a lattice
,”
Ann. Phys.
110
,
440
471
(
1978
).
40.
D. C.
Brydges
,
J.
Fröhlich
, and
E.
Seiler
, “
On the construction of quantized gauge fields
,”
Ann. Phys.
121
,
227
(
1979
);
D. C.
Brydges
J.
Fröhlich
, and
E.
Seiler
Construction of quantized gauge fields. II. Convergence of the lattice approximation
,”
Commun. Math. Phys.
71
,
159
205
(
1980
);
D. C.
Brydges
,
J.
Fröhlich
, and
E.
Seiler
On the construction of quantized gauge fields. III. The two-dimensional Abelian Higgs model without cutoffs
,”
Commun. Math. Phys.
79
,
353
399
(
1981
).
You do not currently have access to this content.