In this paper, we obtain approximate bound state solutions of an N-dimensional fractional time independent Schrödinger equation for a generalised Mie-type potential, namely, V(rα)=Ar2α+Brα+C. Here α(0 < α < 1) acts like a fractional parameter for the space variable r. When α = 1 the potential converts into the original form of Mie-type of potential that is generally studied in molecular and chemical physics. The entire study is composed with a Jumarie-type fractional derivative approach. The solution is expressed via the Mittag-Leffler function and fractionally defined confluent hypergeometric function. To ensure the validity of the present work, obtained results are verified with the previous studies for different potential parameter configurations, specially for α = 1. At the end, few numerical calculations for energy eigenvalue and bound state eigenfunctions are furnished for a typical diatomic molecule.

1.
J.
He
, in
International Conference on Vibrating Engineering, Dalian
(
Dalian, China
,
1998
), p.
288
.
2.
J.
He
,
Bull. Sci. Technol. Soc.
15
,
86
(
1999
).
3.
S.
Fomin
,
V.
Chugunov
, and
T.
Hashida
,
Transp. Porous Media
81
,
187
(
2010
).
4.
N.
Shimizu
and
W.
Zhang
,
JSME Int. J.
42
,
825
(
1999
).
5.
R. L.
Magin
,
Comput. Math. Appl.
59
,
1586
(
2010
).
6.
F.
Mainardi
, “
Fractional calculus: Some basic problems in continuum and statistical mechanics
,” in
Fractals and Fractional Calculus in Continuum Mechanics
(
Springer-Verlag
,
New York
,
1997
).
7.
G. M.
Zaslavsky
,
Phys. Rep.
371
,
461
(
2002
).
8.
N.
Sarkar
and
A.
Lahiri
,
Meccanica
48
,
231
(
2013
).
9.
N.
Laskin
,
Phys. Rev. E
66
,
056108
(
2002
).
10.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
11.
N.
Laskin
,
Phys. Lett. A
268
,
298
(
2000
).
12.
X. Y.
Guo
and
M. Y.
Xu
,
J. Math. Phys.
47
,
082104
(
2006
).
13.
J.
Dong
and
M.
Xu
,
J. Math. Anal. Appl.
344
,
1005
(
2008
).
14.
M.
Naber
,
J. Math. Phys.
45
,
3339
(
2004
).
15.
S. W.
Wang
and
M. Y.
Xu
,
J. Math. Phys.
48
,
043502
(
2007
).
16.
J. P.
Dong
and
M. Y.
Xu
,
J. Math. Phys.
48
,
072105
(
2007
).
17.
J.
Banerjee
,
U.
Ghosh
,
S.
Sarkar
, and
S.
Das
,
Pramana
88
(
4
),
70
(
2017
).
18.
I.
Antoniadis
,
N. A.
Hamed
,
S.
Dimopoulos
, and
G.
Dvali
,
Phys. Lett. B
436
,
257
(
1998
).
19.
S. H.
Dong
,
Wave Equations in Higher Dimensions
(
Springer-Verlag
,
Berlin
,
2011
).
20.
S.
Erkoc
and
R.
Sever
,
Phys. Rev. D
30
,
2117
(
1984
).
21.
S.
Ikhdair
and
R.
Sever
,
Cent. Eur. J. Phys.
6
,
697
(
2008
).
22.
G.
Jumarie
,
Comput. Math. Appl.
51
,
1367
(
2006
).
23.
G.
Jumarie
,
Cent. Eur. J. Phys.
11
,
617
(
2013
).
24.
U.
Ghosh
,
S.
Sengupta
,
S.
Sarkar
, and
S.
Das
,
Eur. J. Acad. Essays
2
,
70
(
2015
).
25.
I.
Podlubny
,
Fractional Differential Equations
, Mathematics in Science and Engineering (
Academic Press
,
San Diego, USA
,
1999
).
26.
Higher Transcendental Functions
, edited by
A.
Erdélyi
(
McGraw-Hill
,
New York
,
1955
), Vol. 3.
27.
U.
Ghosh
,
S.
Sarkar
, and
S.
Das
,
Adv. Pure Math.
5
,
717
(
2015
).
28.
U.
Ghosh
,
S.
Sarkar
, and
S.
Das
,
Am. J. Math. Anal.
3
,
72
(
2015
).
29.
G.
Jumarie
,
J. Appl. Math. Inf.
26
,
1101
(
2008
).
30.
M. R.
Spiegel
,
Schaum’s Outline of Theory and Problems of Laplace Transforms
(
McGraw-Hill
,
New York, NY, USA
,
1965
).
31.
S.
Das
,
Kindergarten of Fractional Calculus
(Lecture Notes on Fractional Calculus-in Use as Limited Prints at
Jadavpur University & Calcutta University
) (in press).
32.
M. R.
Spiegel
,
Schaum’s Outline of Theory and Problems of Vector Analysis and an Introduction to Tensor Analysis
(
McGraw-Hill
,
New York, USA
,
1974
).
33.
A.
Chatterjee
,
Phys. Rep.
186
,
249
(
1990
).
34.
G.
Jumarie
,
Appl. Math. Lett.
22
,
378
(
2009
).
35.
G.
Chen
,
Z. Naturforsch., A
59
,
875
(
2004
).
36.
T.
Das
,
J. Math. Chem.
53
,
618
(
2015
).
You do not currently have access to this content.