In this paper, we give an explicit construction of the unitary irreducible representations of the Poincaré groups in 2, 3, and 4 space-time dimensions on Hilbert spaces associated with the Schrödinger representation of the Weyl algebra for n = 1, 2, and 3, respectively. Our method of constructing the representations uses extension and localization of the enveloping algebras associated with these Weyl algebras and the Poincaré algebras.

1.
Abellanas
,
L.
and
Alonso
,
L. M.
, “
On the Gel’fand-Kirillov conjecture
,”
Commun. Math. Phys.
43
,
69
71
(
1975
).
2.
Alev
,
J.
and
Dumas
,
F.
, “
On enveloping skew fields of some Lie superalgebras
,”
J. Algebra Appl.
15
,
1650071
(
2016
).
3.
Alev
,
J.
,
Ooms
,
A.
, and
Van den Bergh
,
M.
, “
A class of counterexamples to the Gel’fand-Kirillov conjecture
,”
Trans. Am. Math. Soc.
348
,
1709
1716
(
1996
).
4.
Angelopoulos
,
E.
and
Laoues
,
M.
, “
Masslessness in n-dimensions
,”
Rev. Math. Phys.
10
,
271
299
(
1998
).
5.
Bargmann
,
V.
and
Wigner
,
E. P.
,
Proc. Natl. Acad. Sci. U. S. A.
34
,
211
(
1948
).
6.
Bekaert
,
X.
and
Boulanger
,
N.
, e-print arXiv:hep-th/0611263v1, 2nd Modave Summer School in Theoretical Physics (
2006
).
7.
Blank
,
J.
,
Exner
,
P.
, and
Havlíček
,
M.
,
Hilbert Space Operators in Quantum Physics
, Theoretical and Mathematical Physics, 2nd ed. (
Springer, AIP Press
,
New York, New York
,
2008
), pp.
xviii+664
.
8.
Borho
,
W.
,
Gabriel
,
P.
, and
Rentschler
,
R.
,
Primideale in Einhüllenden Auflösbarer Lie-Algebren (Beschreibung durch Bahnenräume)
, Volume 357 of Lecture Notes in Mathematics (
Springer-Verlag
,
Berlin, New York
,
1973
), pp.
iv+182
.
9.
Božek
,
P.
,
Havlíček
,
M.
, and
Navrátil
,
O.
, “
A new relationship between Lie algebras of Poincaré and de Sitter groups
,” Charles University Preprint, NC-TF-85-1 (
1985
).
10.
Cohn
,
P.
,
Skew Fields: The Theory of General Division Rings
,
Encyclopedia of Mathematics and Its Applications
(
Cambridge Univ. Press
,
Cambridge, UK
,
1995
), pp. xv+500.
11.
Dixmier
,
J.
,
Algèbres Enveloppantes
, Les Grands Classiques Gauthier-Villars [Gauthier-Villars Great Classics] (
Éditions Jacques Gabay
,
Paris
,
1996
), pp. iv+349, reprint of the 1974 original.
12.
Fulton
,
W.
and
Harris
,
J.
,
Representation Theory: A First Course
(
Springer Science & Business Media
,
2013
), Vol. 129.
13.
Futorny
,
V.
and
Hartwig
,
J. T.
, “
Solution of a q-difference Noether problem and the quantum Gelfand-Kirillov conjecture for glN
,”
Math. Z.
276
,
1
37
(
2014
).
14.
Gel’fand
,
I. M.
and
Kirillov
,
A. A.
, “
On fields connected with the enveloping algebras of Lie algebras
,”
Dokl. Akad. Nauk SSSR
167
,
503
505
(
1966
).
15.
Gel’fand
,
I. M.
and
Kirillov
,
A. A.
,
Funkt. Ana. i Ego Priloz
3
,
7
26
(
1969
).
16.
Grigore
,
D. R.
,
J. Math. Phys.
34
,
4172
4189
(
1993
).
17.
Hai
,
N. X.
, “
Réduction de produits semi-directs et conjecture de Gel’fand et Kirillov
,”
Bull. Soc. Math. Fr.
107
,
241
267
(
1979
).
18.
Havlíček
,
M.
and
Moylan
,
P.
, “
An embedding of the Poincaré Lie algebra into an extension of the Lie field of SO0(1, 4)
,”
J. Math. Phys.
34
,
5320
5332
(
1993
).
19.
Higson
,
N.
, “
The Mackey analogy and K-theory
,” in
Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey
, Volume 449 of Contemporary Mathematics (
American Mathematical Society
,
Providence, RI
,
2008
), pp.
149
172
.
20.
Jorgensen
,
P.
and
Tian
,
F.
, “
Unbounded operators, Lie algebras and local representations
,” in
Operator Theory
(
Springer
,
Basel
,
2015
), pp.
1221
1243
.
21.
Joseph
,
A.
, “
Proof of the Gelfand-Kirillov conjecture for solvable Lie algebras
,”
Proc. Am. Math. Soc.
45
,
1
10
(
1974
).
22.
Mackey
,
G. W.
, “
Induced representations of locally compact groups. I
,”
Ann. Math.
55
(
1
),
101
139
(
1952
).
23.
Mackey
,
G. W.
, “
On the analogy between semisimple Lie groups and certain related semi-direct product groups
,” in
Lie Groups and Their Representations: Proceedings of Summer School, Bolyai János Mathematical Society, Budapest, 1971
(
Halsted
,
New York
,
1975
), pp.
339
363
.
24.
Martínez Alonso
,
L.
, “
Group-theoretical foundations of classical and quantum mechanics. I. Observables associated with Lie algebras
,”
J. Math. Phys.
18
,
1577
1581
(
1977
).
25.
Martínez Alonso
,
L.
, “
Group-theoretical foundations of classical and quantum mechanics. II. Elementary systems
,”
J. Math. Phys.
20
,
219
230
(
1979
).
26.
McConnell
,
J. C.
, “
Representations of solvable Lie algebras and the Gelfand-Kirillov conjecture
,”
Proc. London Math. Soc.
s3-29
(
3
),
453
484
(
1974
).
27.
Miller
,
W.
,
Lie Theory and Special Functions
(
Academic Press
,
New York
,
1968
).
28.
Moore
,
R. T.
and
Jorgensen
,
P.
,
Operator Commutation Relations: Commutation Relations for Operators
(
Springer Verlag
,
1984
).
29.
Moylan
,
P.
, “
Representations of the Poincaré group from positive energy representations of SO(2, 3)
,” in
Quantum Theory and Symmetries
(
World Scientific Publication
,
Hackensack, NJ
,
2004
), pp.
105
110
.
30.
Moylan
,
P.
, “
Localization and the connection between Uq(so(3)) and Uq̃(osp(1|2))
,”
J. Phys.: Conf. Ser.
597
,
012061
(
2015
).
31.
Nelson
,
E.
,
Ann. Math.
70
,
572
615
(
1959
).
32.
Ooms
,
A. I.
, “
The Gelfand-Kirillov conjecture for semi-direct products of Lie algebras
,”
J. Algebra
305
,
901
911
(
2006
).
33.
Pestov
,
V.
,
J. Lie Theory
5
,
173
178
(
1995
).
34.
Premet
,
A.
, “
Modular Lie algebras and the Gelfand-Kirillov conjecture
,”
Invent. Math.
181
,
395
420
(
2010
).
35.

The representation ρ of the Lie algebra g on a Hilbert space H is said to be Schurean irreducible, if every bounded operator commuting with all of ρ(x) for xg is a multiple of the identity operator on H.

36.

The original term localization is reserved for an extension of enveloping algebra where the denominators are elements from enveloping algebra only; here we have in the denominator the elements from the field, i.e., not from the enveloping algebra.

37.
Vergne
,
M.
, “
La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente
,”
Bull. Soc. Math. Fr.
100
,
301
335
(
1972
).
38.
Vladimirov
,
V. S.
,
Equations of Mathematical Physics
(
Mir
,
Moscow
,
1984
), p.
464
, translated from the Russian by E. Yankovskiĭ.
39.
Wigner
,
E.
, “
On unitary representations of the inhomogeneous Lorentz group
,”
Ann. Math.
40
(
2
),
149
204
(
1939
).
You do not currently have access to this content.