We present a study of the physical flow properties for a recently derived three-dimensional nonlinear geophysical internal wave solution. The Pollard-like internal wave solution is explicit in terms of Lagrangian labelling variables, enabling us to examine the mean flow velocities and mass flux in the three-dimensional setting. We show that the Pollard-like internal water wave does not have a net wave transport.

1.
A.
Bennett
,
Lagranian Fluid Dynamics
(
Cambridge University Press
,
2006
).
2.
J. P.
Boyd
,
Dynamics of the Equatorial Ocean
(
Springer-Verlag
,
Berlin
,
2018
).
3.
A.
Constantin
, “
On the deep water wave motion
,”
J. Phys. A: Math. Gen.
34
(
7
),
1405
1417
(
2001
).
4.
A.
Constantin
, “
Nonlinear water waves with applications to wave-current interactions and tsunamis
,” in
CBMS-NSF Regional Conference Series in Applied Mathematics
(
Society for Industrial and Applied Mathematics
,
2011
), Vol. 81.
5.
A.
Constantin
, “
An exact solution for equatorially trapped waves
,”
J. Geophys. Res.: Oceans
117
,
1
8
, https://doi.org/10.1029/2012jc007879 (
2012
).
6.
A.
Constantin
, “
Some three-dimensional nonlinear equatorial flows
,”
J. Phys. Oceanogr.
43
,
165
175
(
2013
).
7.
A.
Constantin
, “
Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves
,”
J. Phys. Oceanogr.
44
,
781
789
(
2014
).
8.
A.
Constantin
and
R. S.
Johnson
, “
The dynamics of waves interacting with the equatorial undercurrent
,”
Geophys. Astrophys. Fluid Dyn.
109
,
311
358
(
2015
).
9.
A.
Constantin
and
R. S.
Johnson
, “
Current and future prospects for the application of systematic theoretical methods to the study of problems in physical oceanography
,”
Phys. Lett. A
380
,
3007
3012
(
2016
).
10.
A.
Constantin
and
S.
Monismith
, “
Gerstner waves in the presence of mean currents and rotation
,”
J. Fluid Mech.
820
,
511
528
(
2017
).
11.
B.
Cushman-Rosin
and
J.-M.
Beckers
,
Introduction to Geophysical Fluid Dynamic
(
Academic Press
,
2011
).
12.
T.
Garrison
and
R.
Ellis
,
Oceanography: An Invitation to Marine Science
, 9th ed. (
Cengage Learning
,
2016
).
13.
F.
Gerstner
, “
Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile
,”
Ann. Phys.
32
,
412
445
(
1809
).
14.
A. E.
Gill
,
Atmosphere-Ocean Dynamics
(
Academic Press
,
1982
).
15.
D.
Henry
, “
On Gerstner’s water wave
,”
J. Nonlinear Math. Phys.
15
,
87
95
(
2008
).
16.
D.
Henry
, “
An exact solution for equatorial geophysical water waves with an underlying current
,”
Eur. J. Mech. B/Fluids
38
,
18
21
(
2013
).
17.
D.
Henry
, “
Internal equatorial water waves in the f-plane
,”
J. Nonlinear Math. Phys.
22
,
499
506
(
2015
).
18.
D.
Henry
, “
Equatorially trapped nonlinear water waves in a β-plane approximation with centripetal forces
,”
J. Fluid Mech.
804
,
1
11
(
2016
).
19.
D.
Henry
, “
On three dimensional Gerstner-like equatorial water waves
,”
Philos. Trans. R. Soc., A
376
,
1
16
(
2017
).
20.
D.
Henry
and
S.
Sastre-Gómez
, “
Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current
,”
J. Math. Fluid Mech.
18
,
795
804
(
2016
).
21.
H.-C.
Hsu
, “
An exact solution for nonlinear internal equatorial waves in the f-plane approximation
,”
J. Math. Fluid Mech.
16
,
463
471
(
2014
).
22.
D.
Ionescu-Kruse
, “
On Pollard’s wave solution at the equator
,”
J. Nonlinear Math. Phys.
22
,
523
530
(
2015
).
23.
D.
Ionescu-Kruse
, “
Instability of Pollard’s exact solution for geophysical ocean flows
,”
Phys. Fluids
28
,
086601
(
2016
).
24.
D.
Ionescu-Kruse
, “
On the short-wavelength stabilities of some geophysical flows
,”
Philos. Trans. R. Soc., A
376
,
1
21
(
2017
).
25.
G. C.
Johnson
,
M. J.
McPhaden
, and
E.
Firing
, “
Equatorial pacific ocean horizontal velocity, divergence, and upwelling
,”
J. Phys. Oceanogr.
31
,
839
849
(
2000
).
26.
R. S.
Johnson
, “
Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography
,”
Philos. Trans. R. Soc., A
376
,
1
19
(
2017
).
27.
M.
Kluczek
, “
Exact and explicit internal equatorially-trapped water waves with underlying currents
,”
J. Math. Fluid Mech.
19
,
305
314
(
2017
).
28.
M.
Kluczek
, “
Equatorial water waves with underlying currents in the f-plane approximation
,”
Appl. Anal.
97
,
1867
1880
(
2018
).
29.
M.
Kluczek
, “
Exact Pollard-like internal water waves
,”
J. Nonlinear Math. Phys.
26
,
133
146
(
2019
).
30.
M. S.
Longuet-Higgins
, “
Mass transport in water waves
,”
Philos. Trans. R. Soc., A
245
,
535
581
(
1953
).
31.
M. S.
Longuet-Higgins
, “
On the transport of mass by time-varying ocean currents
,”
Deep Sea Res.
16
,
431
447
(
1969
).
32.
R. T.
Pollard
, “
Surface waves with rotation: An exact solution
,”
J. Geophys. Res.
75
,
5895
5898
, https://doi.org/10.1029/jc075i030p05895 (
1970
).
33.
M. C.
Potter
,
D. C.
Wiggert
,
B. H.
Ramadan
, and
T. I.-P.
Shih
,
Mechanic of Fluids
, 4th ed. (
Cengage Learning
,
2012
).
34.
A. R.
Sanjurjo
, “
Internal equatorial water waves and wave-current interactions in the f-plane
,”
Monatsh. Math.
186
,
685
701
(
2018
).
35.
A. R.
Sanjurjo
, “
Global diffeomorphism of the Lagrangian flow-map for Pollard-like solutions
,”
Ann. Math. Pura Appl.
197
,
1787
1797
(
2018
).
36.
A. R.
Sanjurjo
and
M.
Kluczek
, “
Mean flow properties for equatorially trapped internal water wave-current interactions
,”
Appl. Anal.
96
,
2333
2345
(
2017
).
37.
G. G.
Stokes
, “
On the theory of oscillatory waves
,”
Cambridge Library Collection - Mathematics
(
Cambridge University Press
,
2009
), Vol.
1
, pp.
197
229
.
38.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
2006
).
You do not currently have access to this content.