We analyze the smoothness of the ground state energy of a one-parameter Hamiltonian by studying the differential geometry of the numerical range and continuity of the maximum-entropy inference. The domain of the inference map is the numerical range, a convex compact set in the plane. We show that its boundary, viewed as a manifold, has the same order of differentiability as the ground state energy. We prove that discontinuities of the inference map correspond to C1-smooth crossings of the ground state energy with a higher energy level. Discontinuities may appear only at C1-smooth points of the boundary of the numerical range. Discontinuities exist at all C2-smooth non-analytic boundary points and are essentially stronger than at analytic points or at points which are merely C1-smooth (non-exposed points).

1.
I.
Agricola
and
T.
Friedrich
,
Global Analysis: Differential Forms in Analysis, Geometry, and Physics
(
American Mathematical Society
,
Providence, Rhode Island
,
2002
).
2.
E. M.
Alfsen
and
F. W.
Shultz
,
State Spaces of Operator Algebras: Basic Theory, Orientations, and C*-Products
(
Birkhäuser
,
Boston
,
2001
).
3.
L.
Arrachea
,
N.
Canosa
,
A.
Plastino
,
M.
Portesi
, and
R.
Rossignoli
, “
Maximum-entropy approach to critical phenomena in ground states of finite systems
,”
Phys. Rev. A
45
,
7104
7110
(
1992
).
4.
N.
Ay
and
A.
Knauf
, “
Maximizing multi-information
,”
Kybernetika
42
,
517
538
(
2006
).
5.
R.
Balian
and
N. L.
Balazs
, “
Equiprobability, inference, and entropy in quantum theory
,”
Ann. Phys.
179
,
97
144
(
1987
).
6.
G. P.
Barker
and
D.
Carlson
, “
Cones of diagonally dominant matrices
,”
Pac. J. Math.
57
,
15
32
(
1975
).
7.
N.
Bebiano
, “
Nondifferentiable points of ∂Wc(A)
,”
Linear Multilinear Algebra
19
,
249
257
(
1986
).
8.
I.
Bengtsson
and
K.
Życzkowski
,
Geometry of Quantum States
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2017
).
9.
S. K.
Berberian
and
G. H.
Orland
, “
On the closure of the numerical range of an operator
,”
Proc. Am. Math. Soc.
18
,
499
503
(
1967
).
10.
C.
Berge
,
Topological Spaces
(
Oliver and Boyd Ltd.
,
Edinburgh and London
,
1963
).
11.
T.
Bonnesen
and
W.
Fenchel
,
Theory of Convex Bodies
(
BCS Associates
,
Moscow, Idaho, USA
,
1987
).
12.
T.
Bröcker
,
Analysis II
, 2nd ed. (
Spektrum Akademischer Verlag
,
Heidelberg
,
1995
).
13.
H.
Busemann
,
Convex Surfaces
(
Interscience Publishers
,
New York
,
1958
).
14.
L.
Caston
,
M.
Savova
,
I.
Spitkovsky
, and
N.
Zobin
, “
On eigenvalues and boundary curvature of the numerical range
,”
Linear Algebra Appl.
322
,
129
140
(
2001
).
15.
A.
Caticha
,
Entropic Inference and the Foundations of Physics
(
USP Press
,
São Paulo
,
2012
), online at http://www.albany.edu/physics/ACaticha-EIFP-book.pdf.
16.
A.
Caticha
, “
Entropic inference: Some pitfalls and paradoxes we can avoid
,”
AIP Conf. Proc.
1553
,
200
211
(
2013
).
17.
J.
Chen
,
Z.
Ji
,
C.-K.
Li
,
Y.-T.
Poon
,
Y.
Shen
,
N.
Yu
,
B.
Zeng
, and
D.
Zhou
, “
Discontinuity of maximum entropy inference and quantum phase transitions
,”
New J. Phys.
17
,
083019
(
2015
).
18.
J.-Y.
Chen
,
Z.
Ji
,
Z.-X.
Liu
,
Y.
Shen
, and
B.
Zeng
, “
Geometry of reduced density matrices for symmetry-protected topological phases
,”
Phys. Rev. A
93
,
012309
(
2016
).
19.
M.-T.
Chien
and
H.
Nakazato
, “
Flat portions on the boundary of the numerical ranges of certain Toeplitz matrices
,”
Linear Multilinear Algebra
56
,
143
162
(
2008
).
20.
M.-T.
Chien
and
H.
Nakazato
, “
Joint numerical range and its generating hypersurface
,”
Linear Algebra Appl.
432
,
173
179
(
2010
).
21.
D.
Corey
,
C. R.
Johnson
,
R.
Kirk
,
B.
Lins
, and
I.
Spitkovsky
, “
Continuity properties of vectors realizing points in the classical field of values
,”
Linear Multilinear Algebra
61
,
1329
1338
(
2013
).
22.
W. F.
Donoghue
, “
On the numerical range of a bounded operator
,”
Mich. Math. J.
4
,
261
263
(
1957
).
23.
I.
Erb
and
N.
Ay
, “
Multi-information in the thermodynamic limit
,”
J. Stat. Phys.
115
,
949
976
(
2004
).
24.
F. O.
Farid
, “
On a conjecture of Hubner
,”
Proc. Math. Sci.
109
,
373
378
(
1999
).
25.
M.
Fiedler
, “
Geometry of the numerical range of matrices
,”
Linear Algebra Appl.
37
,
81
96
(
1981
).
26.
L. A.
Florit
, “
Parametrizações na teoria de subvariedades
,” in
Colóquios Brasileiros de Matemática
(
IMPA
,
Rio de Janeiro
,
1999
).
27.
B.
Grünbaum
,
Convex Polytopes
, 2nd ed. (
Springer
,
New York
,
2003
).
28.
G.
Gidofalvi
and
D. A.
Mazziotti
, “
Computation of quantum phase transitions by reduced-density-matrix mechanics
,”
Phys. Rev. A
74
,
012501
(
2006
).
29.
E.
Gutkin
,
E. A.
Jonckheere
, and
M.
Karow
, “
Convexity of the joint numerical range: Topological and differential geometric viewpoints
,”
Linear Algebra Appl.
376
,
143
171
(
2004
).
30.
M.
Hansmann
, “
An observation concerning boundary points of the numerical range
,”
Oper. Matrices
9
,
545
548
(
2015
).
31.
F.
Hausdorff
, “
Der wertvorrat einer bilinearform
,”
Math. Z.
3
,
314
316
(
1919
).
32.
M.
Hübner
, “
Spectrum where the boundary of the numerical range is not round
,”
Rocky Mt. J. Math.
25
,
1351
1355
(
1995
).
33.
R. S.
Ingarden
,
A.
Kossakowski
, and
M.
Ohya
,
Information Dynamics and Open Systems
(
Kluwer Academic Publishers Group
,
Dordrecht
,
1997
).
34.
S. V.
Isakov
,
M. B.
Hastings
, and
R. G.
Melko
, “
Topological entanglement entropy of a Bose-Hubbard spin liquid
,”
Nat. Phys.
7
,
772
775
(
2011
).
35.
E. T.
Jaynes
, “
Information theory and statistical mechanics. I
,”
Phys. Rev.
106
,
620
630
(
1957
);
E. T.
Jaynes
, “
Information theory and statistical mechanics. II
,”
Phys. Rev.
108
,
171
190
(
1957
).
36.
E. A.
Jonckheere
,
F.
Ahmad
, and
E.
Gutkin
, “
Differential topology of numerical range
,”
Linear Algebra Appl.
279
,
227
254
(
1998
).
37.
E. A.
Jonckheere
,
A. T.
Rezakhani
, and
F.
Ahmad
, “
Differential topology of adiabatically controlled quantum processes
,”
Quantum Inf. Process.
12
,
1515
1538
(
2013
).
38.
M.
Joswig
and
B.
Straub
, “
On the numerical range map
,”
J. Aust. Math. Soc.
65
,
267
283
(
1998
).
39.
K.
Kato
,
F.
Furrer
, and
M.
Murao
, “
Information-theoretical analysis of topological entanglement entropy and multipartite correlations
,”
Phys. Rev. A
93
,
022317
(
2016
).
40.
R.
Kippenhahn
, “
Über den wertevorrat einer matrix
,”
Math. Nachr.
6
,
193
228
(
1951
).
41.
A.
Kitaev
and
J.
Preskill
, “
Topological entanglement entropy
,”
Phys. Rev. Lett.
96
,
110404
(
2006
).
42.
A.
Kopp
,
X.
Jia
, and
S.
Chakravarty
, “
Replacing energy by von Neumann entropy in quantum phase transitions
,”
Ann. Phys.
322
,
1466
1476
(
2007
).
43.
R.
Langevin
,
G.
Levitt
, and
H.
Rosenberg
, in
Hérissons et Multihérissons, Enveloppes Paramétrées par leur Application de Gauss
, Singularities edited by
S.
Łojasiewicz
(
Banach Center Publications, PWN Polish Scientific Publishers
,
Warsaw
,
1988
).
44.
T.
Leake
,
B.
Lins
, and
I. M.
Spitkovsky
, “
Pre-images of boundary points of the numerical range
,”
Oper. Matrices
8
,
699
724
(
2014
).
45.
T.
Leake
,
B.
Lins
, and
I. M.
Spitkovsky
, “
Inverse continuity on the boundary of the numerical range
,”
Linear Multilinear Algebra
62
,
1335
1345
(
2014
).
46.
T.
Leake
,
B.
Lins
, and
I. M.
Spitkovsky
, “
Corrections and additions to ‘Inverse continuity on the boundary of the numerical range
,’”
Linear Multilinear Algebra
64
,
100
104
(
2016
).
47.
M.
Levin
and
X.-G.
Wen
, “
Detecting topological order in a ground state wave function
,”
Phys. Rev. Lett.
96
,
110405
(
2006
).
48.
M.
Lewenstein
,
A.
Sanpera
, and
V.
Ahufinger
,
Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems
(
Oxford University Press
,
Oxford
,
2012
).
49.
B.
Lins
and
P.
Parihar
, “
Continuous selections of the inverse numerical range map
,”
Linear Multilinear Algebra
64
,
87
99
(
2016
).
50.
Y.
Liu
,
B.
Zeng
, and
D. L.
Zhou
, “
Irreducible many-body correlations in topologically ordered systems
,”
New J. Phys.
18
,
023024
(
2016
).
51.

The notion of lower semi-continuity of a set-valued function goes back to Kuratowski and Bouligand, see Sec. 6.1 of Ref. 10.

52.
M.
Marcus
and
I.
Filippenko
, “
Nondifferentiable boundary points of the higher numerical range
,”
Linear Algebra Appl.
21
,
217
232
(
1978
).
53.
H.
Matsuda
,
K.
Kudo
,
R.
Nakamura
,
O.
Yamakawa
, and
T.
Murata
, “
Mutual information of Ising systems
,”
Int. J. Theor. Phys.
35
,
839
845
(
1996
).
54.
B.
Mirman
, “
Numerical ranges and Poncelet curves
,”
Linear Algebra Appl.
281
,
59
85
(
1998
).
55.
V.
Müller
, “
The joint essential numerical range, compact perturbations, and the Olsen problem
,”
Stud. Math.
197
,
275
290
(
2010
).
56.
S. A.
Ocko
,
X.
Chen
,
B.
Zeng
,
B.
Yoshida
,
Z.
Ji
,
M. B.
Ruskai
, and
I. L.
Chuang
, “
Quantum codes give counterexamples to the unique preimage conjecture of the N-representability problem
,”
Phys. Rev. Lett.
106
,
110501
(
2011
).
57.

That fA is open at |x⟩ means that fA maps neighborhoods of |x⟩ in SCd to neighborhoods of fA(|x⟩) in W.

58.
S.
Papadopoulou
, “
On the geometry of stable compact convex sets
,”
Math. Ann.
229
,
193
200
(
1977
).
59.

The idea of viewing non-exposed points as exposed points of facets is a special case of the conception of poonem.27 

60.
Z.
Puchała
,
J. A.
Miszczak
,
P.
Gawron
,
C. F.
Dunkl
,
J. A.
Holbrook
, and
K.
Życzkowski
, “
Restricted numerical shadow and the geometry of quantum entanglement
,”
J. Phys. A: Math. Theor.
45
,
415309
(
2012
).
61.
J.
Rauh
, “
Finding the maximizers of the information divergence from an exponential family
,”
IEEE Trans. Inf. Theory
57
,
3236
3247
(
2011
).
62.

The relative interior of a subset M of Rn is the interior of M with respect to the topology of the affine hull of M.

63.
F.
Rellich
,
Perturbation Theory of Eigenvalue Problems
(
New York University
,
New York
,
1954
), IMM-NYU 212.
64.

What we call reverse Gauss map xW is known as reverse spherical image map.69 

65.

Section II explains the terminology of round boundary points used in Refs. 21, 45, and 46.

66.
L.
Rodman
,
I. M.
Spitkovsky
,
A.
Szkoła
, and
S.
Weis
, “
Continuity of the maximum-entropy inference: Convex geometry and numerical ranges approach
,”
J. Math. Phys.
57
,
015204
(
2016
)
67.
S.
Sachdev
,
Quantum Phase Transitions
, 2nd ed. (
Cambridge University Press
,
Cambridge, New York
,
2011
).
68.
N.
Salinas
and
M. V.
Velasco
, “
Normal essential eigenvalues in the boundary of the numerical range
,”
Proc. Am. Math. Soc.
129
,
505
513
(
2001
).
69.
R.
Schneider
,
Convex Bodies: The Brunn-Minkowski Theory
, 2nd expanded ed. (
Cambridge University Press
,
New York
,
2014
).
70.
M. E.
Shirokov
, “
Stability of convex sets and applications
,”
Izv.: Math.
76
,
840
856
(
2012
).
71.
J. E.
Shore
and
R. W.
Johnson
, “
Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
,”
IEEE Trans. Inf. Theory
26
,
26
37
(
1980
).
72.
J.
Skilling
, “
Classic maximum entropy
,” in
Maximum Entropy and Bayesian Methods
(
Springer Science+Business Media
,
Dordrecht
,
1989
).
73.
I. M.
Spitkovsky
, “
On the non-round points of the boundary of the numerical range
,”
Linear Multilinear Algebra
47
,
29
33
(
2000
).
74.
I. M.
Spitkovsky
and
S.
Weis
, “
Pre-images of extreme points of the numerical range, and applications
,”
Oper. Matrices
10
,
1043
1058
(
2016
).
75.
M.
Spivak
,
A Comprehensive Introduction to Differential Geometry
, 3rd ed. (
Publish or Perish
,
Houston, Texas
,
1999
), Vol. 2.
76.
R. F.
Streater
, “
Proof of a modified Jaynes’s estimation theory
,”
Open Syst. Inf. Dyn.
18
,
223
233
(
2011
).
77.

For k ≥ 1, a Ck- submanifold M of C is a subset MC such that for each point p of M there is a (real) Ck-diffeomorphism g : UV from an open neighborhood U of p in C to an open neighborhood V of 0 in R2 such that g(MU) lies in the x1-axis of R2. The subset M is an analytic submanifold of C, if g can be chosen to be an analytic diffeomorphism.

78.
R.
Thom
, “
Sur la théorie des enveloppes
,”
J. Math. Pures Appl.
41
,
177
192
(
1962
).
79.
O.
Toeplitz
, “
Das algebraische analogon zu einem satze von Fejér
,”
Math. Z.
2
,
187
197
(
1918
).
80.

The notation un-regn(K) indicates that every regular normal vector u ∈ regn(K) which lies in un-regn(K) is the unique inner unit normal vector at xK(u), because xK(u) is a smooth point.

81.
G.
Vidal
,
J. I.
Latorre
,
E.
Rico
, and
A.
Kitaev
, “
Entanglement in quantum critical phenomena
,”
Phys. Rev. Lett.
90
,
227902
(
2003
).
82.
S.
Weis
, “
A note on touching cones and faces
,”
J. Convex Anal.
19
,
323
353
(
2012
).
83.
S.
Weis
, “
Continuity of the maximum-entropy inference
,”
Commun. Math. Phys.
330
,
1263
1292
(
2014
).
84.
S.
Weis
, “
Maximum-entropy inference and inverse continuity of the numerical range
,”
Rep. Math. Phys.
77
,
251
263
(
2016
).
85.
S.
Weis
, “
Operator systems and convex sets with many normal cones
,”
J. Convex Anal.
24
,
41
64
(
2018
); e-print arXiv:1606.03792 [math.MG].
86.
S.
Weis
and
A.
Knauf
, “
Entropy distance: New quantum phenomena
,”
J. Math. Phys.
53
,
102206
(
2012
).
87.
S.
Weis
,
A.
Knauf
,
N.
Ay
, and
M.-J.
Zhao
, “
Maximizing the divergence from a hierarchical model of quantum states
,”
Open Syst. Inf. Dyn.
22
,
1550006
(
2015
).
88.
E. H.
Wichmann
, “
Density matrices arising from incomplete measurements
,”
J. Math. Phys.
4
,
884
896
(
1963
).
89.
N. Y.
Halpern
,
P.
Faist
,
J.
Oppenheim
, and
A.
Winter
, “
Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges
,”
Nat. Commun.
7
,
12051
(
2016
).
90.
V.
Zauner
,
D.
Draxler
,
L.
Vanderstraeten
,
J.
Haegeman
, and
F.
Verstraete
, “
Symmetry breaking and the geometry of reduced density matrices
,”
New J. Phys.
18
,
113033
(
2016
).
91.
H.
Nakazato
,
Y.
Nishikawa
, and
M.
Takaguchi
, “
On the boundary of the C-numerical range of a matrix
,”
Linear Multilinear Algebra
39
(
3
),
231
240
(
1995
).
You do not currently have access to this content.