A two-variable extension of Bannai-Ito polynomials is presented. They are obtained via q → −1 limits of the bivariate q-Racah and Askey-Wilson orthogonal polynomials introduced by Gasper and Rahman. Their orthogonality relation is obtained. These new polynomials are also shown to be multispectral. Two Dunkl shift operators are seen to be diagonalized by the bivariate Bannai-Ito polynomials and 3- and 9-term recurrence relations are provided.
REFERENCES
1.
2.
S.
Tsujimoto
, L.
Vinet
, and A.
Zhedanov
, “Dunkl shift operators and Bannai–Ito polynomials
,” Adv. Math.
229
(4
), 2123
–2158
(2012
).3.
V.
Genest
, L.
Vinet
, and A.
Zhedanov
, “The non-symmetric Wilson polynomials are the Bannai–Ito polynomials
,” Proc. Am. Math. Soc.
144
(12
), 5217
–5226
(2016
).4.
V.
Genest
, L.
Vinet
, and A.
Zhedanov
, “The Bannai-Ito polynomials as Racah coefficients of the sl−1(2) algebra
,” Proc. Am. Math. Soc.
142
(5
), 1545
–1560
(2014
).5.
V. X.
Genest
, L.
Vinet
, and A.
Zhedanov
, “A Laplace-Dunkl equation on S2 and the Bannai–Ito algebra
,” Commun. Math. Phys.
336
(1
), 243
–259
(2015
).6.
H.
De Bie
, V. X.
Genest
, and L.
Vinet
, “A Dirac–Dunkl equation on S2 and the Bannai–Ito algebra
,” Commun. Math. Phys.
344
(2
), 447
–464
(2016
).7.
V. X.
Genest
, L.
Vinet
, and A.
Zhedanov
, “The Bannai–Ito algebra and a superintegrable system with reflections on the two-sphere
,” J. Phys. A: Math. Theor.
47
(20
), 205202
(2014
).8.
L.
Vinet
and A.
Zhedanov
, “A missing family of classical orthogonal polynomials
,” J. Phys. A: Math. Theor.
44
(8
), 085201
(2011
).9.
L.
Vinet
and A.
Zhedanov
, “A limit q = −1 for the big q-Jacobi polynomials
,” Trans. Am. Math. Soc.
364
(10
), 5491
–5507
(2012
).10.
L.
Vinet
, A.
Zhedanov
et al, “A Bochner theorem for Dunkl polynomials
,” Symmetry, Integrability Geom.: Methods Appl.
7
, 020
(2011
).11.
S.
Tsujimoto
, L.
Vinet
, and A.
Zhedanov
, “Dual -1 Hahn polynomials: Classical polynomials beyond the Leonard duality
,” Proc. Am. Math. Soc.
141
(3
), 959
–970
(2013
).12.
V. X.
Genest
, L.
Vinet
, A.
Zhedanov
et al, “Bispectrality of the complementary Bannai-Ito polynomials
,” Symmetry, Integrability Geom.: Methods Appl.
9
, 018
(2013
).13.
V. X.
Genest
, L.
Vinet
, and A. S.
Zhedanov
, “A continuous limit of the complementary Bannai–Ito polynomials: Chihara polynomials
,” Symmetry, Integrability Geom.: Methods Appl.
10
, 038
(2014
).14.
C. F.
Dunkl
and Y.
Xu
, Orthogonal Polynomials of Several Variables
(Cambridge University Press
, 2014
), Vol. 155.15.
L.
Fernández
, F.
Marcellán
, T. E.
Pérez
, and M. A.
Pinar
, “Recent trends on two variable orthogonal polynomials
,” in Differential Algebra, Complex Analysis and Orthogonal Polynomials
(The American Mathematical Society Providence
, RI
, 2010
), Vol. 509, pp. 59
–86
.16.
I. G.
Macdonald
et al, Affine Hecke Algebras and Orthogonal Polynomials
(Cambridge University Press
, 2003
), Vol. 157.17.
M.
Tratnik
, “Some multivariable orthogonal polynomials of the askey tableau-discrete families
,” J. Math. Phys.
32
(9
), 2337
–2342
(1991
).18.
M.
Tratnik
, “Some multivariable orthogonal polynomials of the Askey tableau—Continuous families
,” J. Math. Phys.
32
(8
), 2065
–2073
(1991
).19.
J. S.
Geronimo
and P.
Iliev
, “Bispectrality of multivariable Racah–Wilson polynomials
,” Constr. Approximation
31
(3
), 417
–457
(2010
).20.
P.
Iliev
, “Bispectral commuting difference operators for multivariable Askey-Wilson polynomials
,” Trans. Am. Math. Soc.
363
(3
), 1577
–1598
(2011
).21.
G.
Gasper
and M.
Rahman
, “Some systems of multivariable orthogonal q-Racah polynomials
,” Ramanujan J.
13
(1-3
), 389
–405
(2007
).22.
G.
Gasper
and M.
Rahman
, “Some systems of multivariable orthogonal Askey-Wilson polynomials
,” in Theory and Applications of Special Functions
(Springer
, 2005
), pp. 209
–219
.23.
24.
J.-M.
Lemay
, L.
Vinet
, and A.
Zhedanov
, “The para-Racah polynomials
,” J. Math. Anal. Appl.
438
(2
), 565
–577
(2016
).25.
J.-M.
Lemay
, L.
Vinet
, and A.
Zhedanov
, “A q-generalization of the para-Racah polynomials
,” J. Math. Anal. Appl.
462
(1
), 323
–336
(2018
).26.
R.
Koekoek
, P. A.
Lesky
, and R. F.
Swarttouw
, Hypergeometric Orthogonal Polynomials and Their Q-Analogues
(Springer Science & Business Media
, 2010
).27.
H.
De Bie
, V. X.
Genest
, and L.
Vinet
, “The Dirac–Dunkl operator and a higher rank Bannai-Ito algebra
,” Adv. Math.
303
, 390
–414
(2016
).28.
H.
De Bie
, V. X.
Genest
, J.-M.
Lemay
, and L.
Vinet
, “A superintegrable model with reflections on S3 and the rank two Bannai-Ito algebra
,” Acta Polytech.
56
, 166
–172
(2016
).29.
H.
De Bie
, V. X.
Genest
, J.-M.
Lemay
, and L.
Vinet
, “A superintegrable model with reflections on Sn−1 and the higher rank Bannai-Ito algebra
,” J. Phys. A: Math. Theor.
50
(19
), 195202
(2017
).30.
It might be possible to absorb this singularity with some fine-tuning of the parameters as has been done for the Racah and q-Racah polynomials,24,25 but this has not been explored yet and goes beyond the scope of this paper.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.