Let G be the N = 1 extended Neveu-Schwarz algebra and Greg* its regular dual. In this paper, we will study a super-Euler system with seven parameters (s1, s2, c1, …, c5) associated with Greg*. We will show that the super-Euler system is (1) local bi-superbihamiltonian if s1=14c1 and s2=12c2; (2) supersymmetric if s1 = c1 and s2 = c2; (3) local bi-superbihamiltonian and supersymmetric if s1 = c1 = 0 and s2 = c2 = 0. By choosing different parameters, we could obtain several supersymmetric or bi-superhamiltonian generalizations of some well-known integrable systems including the Ito equation, the 2-component Camassa-Holm equation, the 2-component Hunter-Saxton equation, and, especially, the Whitham-Broer-Kaup dispersive water-wave system.

1.
G. B.
Whitham
, “
Variational methods and applications to water waves
,”
Proc. R. Soc. A
299
,
6
25
(
1967
).
2.
L. J. F.
Broer
, “
Approximate equations for long water waves
,”
Appl. Sci. Res.
31
,
377
395
(
1975
).
3.
D. J.
Kaup
, “
A higher-order water-wave equation and the method for solving it
,”
Prog. Theor. Phys.
54
,
396
408
(
1975
).
4.
B. A.
Kupershmidt
, “
Mathematics of dispersive water waves
,”
Commun. Math. Phys.
99
,
51
73
(
1985
).
5.
S. V.
Manakov
, “
Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body
,”
Funct. Anal. Appl.
10
,
328
329
(
1976
).
6.
P.
Marcel
,
V.
Ovsienko
, and
C.
Roger
, “
Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators
,”
Lett. Math. Phys.
40
,
31
39
(
1997
).
7.
V. I.
Arnold
and
B. A.
Khesin
,
Topological Methods in Hydrodynamics
, Volume 125 of Applied Mathematical Sciences (
Springer-Verlag
,
New York
,
1998
), pp.
xv+374
.
8.
J.
Marsden
and
T.
Ratiu
,
Introduction to Mechanics and Symmetry
, Volume 17 of Text in Applied Mathematics, 2nd ed. (
Springer-Verlag
,
New York
,
1999
).
9.
B.
Khesin
and
R.
Wendt
,
The Geometry of Infinite-Dimensional Groups
(
Springer-Verlag
,
New York
,
2009
).
10.
B. A.
Kupershmidt
, “
Super long waves
,”
Mech. Res. Commun.
13
,
47
51
(
1986
).
11.
V. Yu.
Ovsienko
and
B.
Khesin
, “
The (super) KdV equation as an Euler equation
,”
Funct. Anal. Appl.
21
,
329
331
(
1987
).
12.
M.
Antonowicz
and
A. P.
Fordy
, “
Super-extensions of energy dependent Schröinger operators
,”
Commun. Math. Phys.
124
,
487
500
(
1989
).
13.
G.
Misiolek
, “
A shallow water equation as a geodesic flow on the Bott-Virasoro group
,”
J. Geom. Phys.
24
,
203
208
(
1998
).
14.
B.
Kolev
, “
Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations
,”
Philos. Trans. R. Soc. London
365
,
2333
2357
(
2007
).
15.
B.
Khesin
and
G.
Misiolek
, “
Euler equations on homogeneous spaces and Virasoro orbits
,”
Adv. Math.
176
,
116
144
(
2003
).
16.
B.
Khesin
,
J.
Lenells
, and
G.
Misiolek
, “
Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms
,”
Math. Ann.
342
,
617
656
(
2008
).
17.
P.
Guha
and
P. J.
Olver
, “
Geodesic flow and two (super) component analog of the Camassa-Holm equation
,”
Symmetry Integrability Geom. Methods Appl.
2
,
054
(
2006
).
18.
D.
Zuo
, “
A 2-component μ-Hunter-Saxton equation
,”
Inverse Probl.
26
,
085003
(
2010
).
19.
I. A. B.
Strachan
and
B.
Szablikowski
, “
Novikov algebras and a classification of multicomponent Camassa-Holm equations
,”
Stud. Appl. Math.
133
,
84
117
(
2014
).
20.
C.
Devchand
and
J.
Schiff
, “
The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group
,”
J. Math. Phys.
42
(
1
),
260
273
(
2001
).
21.
J. C.
Brunelli
,
A.
Das
, and
Z.
Popowicz
, “
Supersymmetric extensions of the Harry Dym hierarchy
,”
J. Math. Phys.
44
,
4756
4767
(
2003
).
22.
H.
Aratyn
,
J. F.
Gomes
, and
A. H.
Zimerman
, “
Deformations of N=2 superconformal algebra and supersymmetric two-component Camassa-Holm equation
,”
J. Phys. A: Math. Theor.
40
(
17
),
4511
4527
(
2007
).
23.
J.
Lenells
, “
A bi-Hamiltonian supersymmetric geodesic equation
,”
Lett. Math. Phys.
85
,
55
63
(
2008
).
24.
J.
Lenells
and
O.
Lechtenfeld
, “
On the N=2 supersymmetric Camassa-Holm and Hunter-Saxton equations
,”
J. Math. Phys.
50
(
1
),
012704
(
2009
).
25.
D.
Zuo
, “
Euler equations related to the generalized Neveu-Schwarz algebra
,”
Symmetry Integrability Geom. Methods Appl.
9
,
045
(
2013
).
26.
D.
Zuo
, “
The Frobenius-Virasoro algebra and Euler equations
,”
J. Geom. Phys.
86
,
203
210
(
2014
).
27.
S. L.
Ma
,
Y. M.
Wu
, and
D.
Zuo
, “
The Frobenius-Virasoro algebra and Euler equations-II: Multi-component cases
,”
J. Geom. Phys.
135
,
32
41
(
2019
).
28.
The variational derivatives δHδu, δHδψ, δHδv, and δHδγ are defined by
ddϵϵ=0H[Ũ+ϵδŨ]=δuδHδu+δψδHδψ+δvδHδv+δγδHδγdx.
.
You do not currently have access to this content.