Let be the N = 1 extended Neveu-Schwarz algebra and its regular dual. In this paper, we will study a super-Euler system with seven parameters (s1, s2, c1, …, c5) associated with . We will show that the super-Euler system is (1) local bi-superbihamiltonian if and ; (2) supersymmetric if s1 = c1 and s2 = c2; (3) local bi-superbihamiltonian and supersymmetric if s1 = c1 = 0 and s2 = c2 = 0. By choosing different parameters, we could obtain several supersymmetric or bi-superhamiltonian generalizations of some well-known integrable systems including the Ito equation, the 2-component Camassa-Holm equation, the 2-component Hunter-Saxton equation, and, especially, the Whitham-Broer-Kaup dispersive water-wave system.
REFERENCES
1.
G. B.
Whitham
, “Variational methods and applications to water waves
,” Proc. R. Soc. A
299
, 6
–25
(1967
).2.
L. J. F.
Broer
, “Approximate equations for long water waves
,” Appl. Sci. Res.
31
, 377
–395
(1975
).3.
D. J.
Kaup
, “A higher-order water-wave equation and the method for solving it
,” Prog. Theor. Phys.
54
, 396
–408
(1975
).4.
B. A.
Kupershmidt
, “Mathematics of dispersive water waves
,” Commun. Math. Phys.
99
, 51
–73
(1985
).5.
S. V.
Manakov
, “Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body
,” Funct. Anal. Appl.
10
, 328
–329
(1976
).6.
P.
Marcel
, V.
Ovsienko
, and C.
Roger
, “Extension of the Virasoro and Neveu-Schwarz algebras and generalized Sturm-Liouville operators
,” Lett. Math. Phys.
40
, 31
–39
(1997
).7.
V. I.
Arnold
and B. A.
Khesin
, Topological Methods in Hydrodynamics
, Volume 125 of Applied Mathematical Sciences (Springer-Verlag
, New York
, 1998
), pp. xv+374
.8.
J.
Marsden
and T.
Ratiu
, Introduction to Mechanics and Symmetry
, Volume 17 of Text in Applied Mathematics, 2nd ed. (Springer-Verlag
, New York
, 1999
).9.
B.
Khesin
and R.
Wendt
, The Geometry of Infinite-Dimensional Groups
(Springer-Verlag
, New York
, 2009
).10.
B. A.
Kupershmidt
, “Super long waves
,” Mech. Res. Commun.
13
, 47
–51
(1986
).11.
V. Yu.
Ovsienko
and B.
Khesin
, “The (super) KdV equation as an Euler equation
,” Funct. Anal. Appl.
21
, 329
–331
(1987
).12.
M.
Antonowicz
and A. P.
Fordy
, “Super-extensions of energy dependent Schröinger operators
,” Commun. Math. Phys.
124
, 487
–500
(1989
).13.
G.
Misiolek
, “A shallow water equation as a geodesic flow on the Bott-Virasoro group
,” J. Geom. Phys.
24
, 203
–208
(1998
).14.
B.
Kolev
, “Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations
,” Philos. Trans. R. Soc. London
365
, 2333
–2357
(2007
).15.
B.
Khesin
and G.
Misiolek
, “Euler equations on homogeneous spaces and Virasoro orbits
,” Adv. Math.
176
, 116
–144
(2003
).16.
B.
Khesin
, J.
Lenells
, and G.
Misiolek
, “Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms
,” Math. Ann.
342
, 617
–656
(2008
).17.
P.
Guha
and P. J.
Olver
, “Geodesic flow and two (super) component analog of the Camassa-Holm equation
,” Symmetry Integrability Geom. Methods Appl.
2
, 054
(2006
).18.
D.
Zuo
, “A 2-component μ-Hunter-Saxton equation
,” Inverse Probl.
26
, 085003
(2010
).19.
I. A. B.
Strachan
and B.
Szablikowski
, “Novikov algebras and a classification of multicomponent Camassa-Holm equations
,” Stud. Appl. Math.
133
, 84
–117
(2014
).20.
C.
Devchand
and J.
Schiff
, “The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group
,” J. Math. Phys.
42
(1
), 260
–273
(2001
).21.
J. C.
Brunelli
, A.
Das
, and Z.
Popowicz
, “Supersymmetric extensions of the Harry Dym hierarchy
,” J. Math. Phys.
44
, 4756
–4767
(2003
).22.
H.
Aratyn
, J. F.
Gomes
, and A. H.
Zimerman
, “Deformations of N=2 superconformal algebra and supersymmetric two-component Camassa-Holm equation
,” J. Phys. A: Math. Theor.
40
(17
), 4511
–4527
(2007
).23.
J.
Lenells
, “A bi-Hamiltonian supersymmetric geodesic equation
,” Lett. Math. Phys.
85
, 55
–63
(2008
).24.
J.
Lenells
and O.
Lechtenfeld
, “On the N=2 supersymmetric Camassa-Holm and Hunter-Saxton equations
,” J. Math. Phys.
50
(1
), 012704
(2009
).25.
D.
Zuo
, “Euler equations related to the generalized Neveu-Schwarz algebra
,” Symmetry Integrability Geom. Methods Appl.
9
, 045
(2013
).26.
D.
Zuo
, “The Frobenius-Virasoro algebra and Euler equations
,” J. Geom. Phys.
86
, 203
–210
(2014
).27.
S. L.
Ma
, Y. M.
Wu
, and D.
Zuo
, “The Frobenius-Virasoro algebra and Euler equations-II: Multi-component cases
,” J. Geom. Phys.
135
, 32
–41
(2019
).28.
The variational derivatives , , , and are defined by.
© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.