Symmetry operators of twistor spinors and harmonic spinors can be constructed from conformal Killing-Yano (CKY) forms. Transformation operators relating twistors to harmonic spinors are found in terms of potential forms. These constructions are generalized to gauged twistor spinors and gauged harmonic spinors. The operators that transform gauged twistor spinors to gauged harmonic spinors are found. Symmetry operators of gauged harmonic spinors in terms of CKY forms are obtained. Algebraic conditions to obtain solutions of the Seiberg-Witten equations are discussed.
REFERENCES
1.
H.
Baum
, T.
Friedrich
, R.
Grunewald
, and I.
Kath
, Twistors and Killing Spinors on Riemannian Manifolds
(Teubner
, Stuttgart, Leipzig
, 1991
).2.
J. P.
Bourguignon
, O.
Hijazi
, J. L.
Milhorat
, A.
Moroianu
, and S.
Moroianu
, A Spinorial Approach to Riemannian and Conformal Geometry
(European Mathematical Society
, Zurich
, 2015
).3.
P.
de Medeiros
, “Rigid supersymmetry, conformal coupling and twistor spinors
,” J. High Energy Phys.
2014
, 032
.4.
D.
Cassani
, C.
Klare
, D.
Martelli
, A.
Tomasiello
, and A.
Zaffaroni
, “Supersymmetry in Lorentzian curved spaces and holography
,” Commun. Math. Phys.
327
, 577
(2014
).5.
Ö.
Açık
and Ü.
Ertem
, “Higher-degree Dirac currents of twistor and Killing spinors in supergravity theories
,” Classical Quantum Gravity
32
, 175007
(2015
).6.
I. M.
Benn
and P.
Charlton
, “Dirac symmetry operators from conformal Killing-Yano tensors
,” Classical Quantum Gravity
14
, 1037
(1997
).7.
Ü.
Ertem
, “Extended superalgebras from twistor and Killing spinors
,” Differ. Geom. Appl.
54
, 236
(2017
).8.
Ü.
Ertem
, “Twistor spinors and extended conformal superalgebras
,” e-print arXiv:1605.03361 [hep-th] (2016
).9.
I. M.
Benn
and J.
Kress
, “Differential forms relating twistors to Dirac fields
,” in Differential Geometry and its Applications, Proceedings of the 10th International Conference DGA 2007
(World Scientific Publishing
, Singapore
, 2008
), pp. 573
.10.
N.
Seiberg
and E.
Witten
, “Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD
,” Nucl. Phys. B
431
, 484
(1994
).11.
G.
Festuccia
and N.
Seiberg
, “Rigid supersymmetric theories in curved superspace
,” J. High Energy Phys.
2011
, 114
.12.
C.
Klare
, A.
Tomasiello
, and A.
Zaffaroni
, “Supersymmetry on curved spaces and holography
,” J. High Energy Phys.
2012
, 061
.13.
D.
Cassani
and D.
Martelli
, “Supersymmetry on curved spaces and superconformal anomalies
,” J. High Energy Phys.
2013
, 025
.14.
Ü.
Ertem
, “Gauged twistor spinors and symmetry operators
,” J. Math. Phys.
58
, 032302
(2017
).15.
I. M.
Benn
and R. W.
Tucker
, An Introduction to Spinors and Geometry with Applications in Physics
(IOP Publishing
, Bristol
, 1987
).16.
P.
Charlton
, “The geometry of pure spinors, with applications
,” Ph.D. thesis, University of Newcastle
, 1997
.17.
Ö.
Açık
, Ü.
Ertem
, M.
Önder
, and A.
Verçin
, “Basic gravitational currents and Killing-Yano forms
,” Gen. Relativ. Gravitation
42
, 2543
(2010
).18.
Ü.
Ertem
, “Lie algebra of conformal Killing-Yano forms
,” Classical Quantum Gravity
33
, 125033
(2016
).19.
Ö.
Açık
and Ü.
Ertem
, “Spin raising and lowering operators for Rarita-Schwinger fields
,” Phys. Rev. D
98
, 066004
(2018
).20.
R.
Penrose
and W.
Rindler
, Spinors and Space-Time
(Cambridge University Press
, Cambridge
, 1986
), Vol. 2.21.
I. M.
Benn
, P.
Charlton
, and J.
Kress
, “Debye potentials for Maxwell and Dirac fields from a generalization of the Killing-Yano equation
,” J. Math. Phys.
38
, 4504
(1997
).22.
I. M.
Benn
and J.
Kress
, “First-order Dirac symmetry operators
,” Classical Quantum Gravity
21
, 427
(2004
).23.
Ö.
Açık
, Ü.
Ertem
, M.
Önder
, and A.
Verçin
, “First-order symmetries of the Dirac equation in a curved background: A unified dynamical symmetry condition
,” Classical Quantum Gravity
26
, 075001
(2009
).24.
P.
de Medeiros
, “Submaximal conformal symmetry superalgebras for Lorentzian manifolds of low dimension
,” J. High Energy Phys.
2016
, 008
.25.
T.
Friedrich
, Dirac Operators in Riemannian Geometry
(American Mathematical Society
, 2000
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.