In this paper, we introduce a new partial order on quantum states that considers which states can be achieved from others by updating on “agreeing” Bayesian evidence. We prove that this order can also be interpreted in terms of minimising worst case distinguishability between states using the concept of quantum max-divergence. This order solves the problem of which states are optimal approximations to their more pure counterparts, and it shows in an explicit way that a proposed quantum analog of Bayes’ rule leads to a Bayesian update that changes the state as little as possible when updating on positive evidence. We prove some structural properties of the order, specifically that the order preserves convex mixtures and tensor products of states and that it is a domain. The uniqueness of the order given these properties is discussed. Finally we extend this order on states to one on quantum channels using the Jamiołkowski isomorphism. This order turns the spaces of unital/non-unital trace-preserving quantum channels into domains that, unlike the regular order on channels, is not trivial for unital trace-preserving channels.

1.
P. M.
Alberti
and
A.
Uhlmann
,
Stochasticity and Partial Order
(
Deutscher Verlag der Wissenschaften
,
1982
).
2.
W. B.
Arveson
, “
Subalgebras of c*-algebras
,”
Acta Math.
123
(
1
),
141
224
(
1969
).
3.
G.
Chiribella
and
D.
Ebler
, “
Optimal quantum networks and one-shot entropies
,”
New J. Phys.
18
(
9
),
093053
(
2016
).
4.
K.
Cho
, “
Semantics for a quantum programming language by operator algebras
,”
New Gener. Comput.
34
(
1-2
),
25
68
(
2016
).
5.
B.
Coecke
and
K.
Martin
, “
A partial order on classical and quantum states
,” in
New Structures for Physics
(
Springer Nature
,
2010
), pp.
593
683
.
6.
N.
Datta
, “
Min-and max-relative entropies and a new entanglement monotone
,”
IEEE Trans. Inf. Theory
55
(
6
),
2816
2826
(
2009
).
7.
C. A.
Fuchs
, “
Quantum mechanics as quantum information (and only a little more)
,” preprint arXiv:quant-ph/0205039 (
2002
).
8.
G.
Gierz
,
K. H.
Hofmann
,
K.
Keimel
,
J. D.
Lawson
,
M.
Mislove
, and
D. S.
Scott
,
Continuous Lattices and Domains
(
Cambridge University Press
,
2003
), Vol. 93.
9.
B.
Jacobs
, “
Lower and upper conditioning in quantum Bayesian theory
,” in
Proceedings 15th International Conference on Quantum Physics and Logic, Halifax, Canada, 3-7 June 2018, Volume forthcoming of Electronic Proceedings in Theoretical Computer Science
, edited by
B.
Coecke
and
A.
Kissinger
(
Open Publishing Association
,
2018
).
10.
M.
Jiang
,
S.
Luo
, and
S.
Fu
, “
Channel-state duality
,”
Phys. Rev. A
87
,
022310
(
2013
).
11.
M. S.
Leifer
and
R. W.
Spekkens
, “
Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference
,”
Phys. Rev. A
88
(
5
),
052130
(
2013
).
12.
K.
Martin
,
A Foundation for Computation
(
Tulane University
,
New Orleans, LA
,
2000
).
13.
K.
Martin
, “
A domain theoretic model of qubit channels
,” in
Automata, Languages and Programming
(
Springer Nature
,
2008
), pp.
283
297
.
14.
M.
Mosonyi
and
F.
Hiai
, “
On the quantum Rényi relative entropies and related capacity formulas
,”
IEEE Trans. Inf. Theory
57
(
4
),
2474
2487
(
2011
).
15.
M.
Mosonyi
and
T.
Ogawa
, “
Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies
,”
Commun. Math. Phys.
334
(
3
),
1617
1648
(
2014
).
16.
M.
Müller-Lennert
,
F.
Dupuis
,
O.
Szehr
,
S.
Fehr
, and
M.
Tomamichel
, “
On quantum Rényi entropies: A new generalization and some properties
,”
J. Math. Phys.
54
(
12
),
122203
(
2013
).
17.

The QPE order is actually an example of a pospace: The graph induced by the order is closed in the space DO(n) × DO(n).

18.

In the language of category theory: That the order structure is an enrichment of the category.

19.

The paper5 introducing the spectral order proves the domain property on a mistaken assumption. A concrete counter-example showing that it is not a domain is given in the author’s Master thesis.22 

20.
D.
Reeb
,
M. J.
Kastoryano
, and
M. M.
Wolf
, “
Hilbert’s projective metric in quantum information theory
,”
J. Math. Phys.
52
(
8
),
082201
(
2011
).
21.
J.
van de Wetering
, “
Entailment relations on distributions
,”
Electron. Proc. Theor. Comput. Sci.
221
,
58
66
(
2016
).
22.
J.
van de Wetering
, “
Ordering information on distributions
,” M.S. thesis,
Radboud University
,
2016
; e-print arXiv:1701.06924.
23.
F.
Verstraete
and
H.
Verschelde
, “
On quantum channels
,” preprint arXiv:quant-ph/0202124 (
2002
).
24.
M. M.
Wilde
,
A.
Winter
, and
D.
Yang
, “
Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched Rényi relative entropy
,”
Commun. Math. Phys.
331
(
2
),
593
622
(
2014
).
You do not currently have access to this content.