Because Einstein–Podolsky–Rosen states are well-defined on the Weyl algebra, their canonical cyclic representations are suitable for demonstrating the process of remote state preparation. Local projection-valued measurements and the corresponding recovery unitary operator are formulated in this representation, whereupon generalized equatorial states are prepared remotely and faithfully.

1.
A.
Einstein
,
B.
Podolsky
, and
N.
Rosen
, “
Can quantum-mechanical description of physical reality be considered complete?
,”
Phys. Rev.
47
,
777
780
(
1935
).
2.
R.
Arens
and
V. S.
Varadarajan
, “
On the concept of Einstein-Podolsky-Rosen states and their structure
,”
J. Math. Phys.
41
,
638
651
(
2000
).
3.
R. F.
Werner
, “
EPR states for von Neumann algebras
,” e-print arXiv:quant-ph/9910077 (
1999
).
4.
S.
Huang
, “
On states of perfect correlation
,”
J. Math. Phys.
49
,
112101
(
2008
).
5.
E.
Schrödinger
, “
Discussion of probability relations between separated systems
,”
Math. Proc. Cambridge Philos. Soc.
31
,
555
563
(
1935
).
6.
D.
Bohm
,
Quantum Theory
(
Prentice Hall
,
1951
).
7.
A. K.
Ekert
, “
Quantum cryptography based on Bell’s theorem
,”
Phys. Rev. Lett.
67
,
661
663
(
1991
).
8.
C. H.
Bennett
,
G.
Brassard
,
C.
Crépeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
, “
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
,”
Phys. Rev. Lett.
70
,
1895
1899
(
1993
).
9.
C. H.
Bennett
and
S. J.
Wiesner
, “
Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states
,”
Phys. Rev. Lett.
69
,
2881
2884
(
1992
).
10.
T. C.
Ralph
, “
Continuous variable quantum cryptography
,”
Phys. Rev. A
61
,
010303
(
1999
).
11.
S. L.
Braunstein
and
H. J.
Kimble
, “
Teleportation of continuous quantum variables
,”
Phys. Rev. Lett.
80
,
869
872
(
1998
).
12.
M.
Koniorczyk
,
V.
Bužek
, and
J.
Janszky
, “
Wigner-function description of quantum teleportation in arbitrary dimensions and a continuous limit
,”
Phys. Rev. A
64
,
034301
(
2001
).
13.
A. K.
Pati
, “
Minimum classical bit for remote preparation and measurement of a qubit
,”
Phys. Rev. A
63
,
014302
(
2000
).
14.
H.-K.
Lo
, “
Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity
,”
Phys. Rev. A
62
,
012313
(
2000
).
15.
B.
Zeng
and
P.
Zhang
, “
Remote-state preparation in higher dimension and the parallelizable manifold Sn−1
,”
Phys. Rev. A
65
,
022316
(
2002
).
16.
M.-Y.
Ye
,
Y.-S.
Zhang
, and
G.-C.
Guo
, “
Faithful remote state preparation using finite classical bits and a nonmaximally entangled state
,”
Phys. Rev. A
69
,
022310
(
2004
).
17.
Z.
Kurucz
and
P.
Adam
, “
Preparable ensembles for remote state preparation
,”
J. Opt. B: Quantum Semiclassical Opt.
7
,
135
138
(
2005
).
18.
S.
Huang
, “
Remote state preparation using positive operator-valued measures
,”
Phys. Lett. A
377
,
448
451
(
2013
).
19.
M. G. A.
Paris
,
M.
Cola
, and
R.
Bonifacio
, “
Remote state preparation and teleportation in phase space
,”
J. Opt. B: Quantum Semiclassical Opt.
5
,
S360
S364
(
2003
).
20.
Z.
Kurucz
,
P.
Adam
,
Z.
Kis
, and
J.
Janszky
, “
Continuous variable remote state preparation
,”
Phys. Rev. A
72
,
052315
(
2005
).
21.
Z.
Kurucz
,
P.
Adam
, and
J.
Janszky
, “
Remote state preparation in quadrature basis
,”
Acta Phys. Hung. B
26
,
319
326
(
2006
).
22.
E.
Wu
,
Y. H.
Ma
,
L. X.
Zeng
, and
X. A.
Zhang
, “
Continuous variable remote state preparation with a two-mode squeezed vacuum state
,”
Int. J. Theor. Phys.
47
,
1600
1605
(
2008
).
23.
A.
Holevo
,
Statistical Structure of Quantum Theory
(
Springer
,
2001
).
24.
H.
Halvorson
, “
The Einstein-Podolsky-Rosen state maximally violates Bell’s inequalities
,”
Lett. Math. Phys.
53
,
321
329
(
2000
).
25.
M.
Sirugue
,
Improper States of Canonical Commutation Relations for a Finite Number of Degrees of Freedom
(
CNRS
,
Marseille
,
1971
), preprint 71/p. 421.
26.
S.
Huang
, “
Generalized Einstein-Podolsky-Rosen states
,”
J. Math. Phys.
48
,
112102
(
2007
).
27.

It is unclear how one would prepare an EPR state in the lab, and even if one succeeded, it would be indistinguishable from a Schrödinger state for any error bound on a finite collection of observables.

28.
B.
Blackadar
,
Operator Algebras: Theory of C*-Algebras and von Neumann Algebras
(
Springer
,
2006
).
You do not currently have access to this content.