Because Einstein–Podolsky–Rosen states are well-defined on the Weyl algebra, their canonical cyclic representations are suitable for demonstrating the process of remote state preparation. Local projection-valued measurements and the corresponding recovery unitary operator are formulated in this representation, whereupon generalized equatorial states are prepared remotely and faithfully.
REFERENCES
1.
A.
Einstein
, B.
Podolsky
, and N.
Rosen
, “Can quantum-mechanical description of physical reality be considered complete?
,” Phys. Rev.
47
, 777
–780
(1935
).2.
R.
Arens
and V. S.
Varadarajan
, “On the concept of Einstein-Podolsky-Rosen states and their structure
,” J. Math. Phys.
41
, 638
–651
(2000
).3.
4.
S.
Huang
, “On states of perfect correlation
,” J. Math. Phys.
49
, 112101
(2008
).5.
E.
Schrödinger
, “Discussion of probability relations between separated systems
,” Math. Proc. Cambridge Philos. Soc.
31
, 555
–563
(1935
).6.
7.
A. K.
Ekert
, “Quantum cryptography based on Bell’s theorem
,” Phys. Rev. Lett.
67
, 661
–663
(1991
).8.
C. H.
Bennett
, G.
Brassard
, C.
Crépeau
, R.
Jozsa
, A.
Peres
, and W. K.
Wootters
, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
,” Phys. Rev. Lett.
70
, 1895
–1899
(1993
).9.
C. H.
Bennett
and S. J.
Wiesner
, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states
,” Phys. Rev. Lett.
69
, 2881
–2884
(1992
).10.
T. C.
Ralph
, “Continuous variable quantum cryptography
,” Phys. Rev. A
61
, 010303
(1999
).11.
S. L.
Braunstein
and H. J.
Kimble
, “Teleportation of continuous quantum variables
,” Phys. Rev. Lett.
80
, 869
–872
(1998
).12.
M.
Koniorczyk
, V.
Bužek
, and J.
Janszky
, “Wigner-function description of quantum teleportation in arbitrary dimensions and a continuous limit
,” Phys. Rev. A
64
, 034301
(2001
).13.
A. K.
Pati
, “Minimum classical bit for remote preparation and measurement of a qubit
,” Phys. Rev. A
63
, 014302
(2000
).14.
H.-K.
Lo
, “Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity
,” Phys. Rev. A
62
, 012313
(2000
).15.
B.
Zeng
and P.
Zhang
, “Remote-state preparation in higher dimension and the parallelizable manifold Sn−1
,” Phys. Rev. A
65
, 022316
(2002
).16.
M.-Y.
Ye
, Y.-S.
Zhang
, and G.-C.
Guo
, “Faithful remote state preparation using finite classical bits and a nonmaximally entangled state
,” Phys. Rev. A
69
, 022310
(2004
).17.
Z.
Kurucz
and P.
Adam
, “Preparable ensembles for remote state preparation
,” J. Opt. B: Quantum Semiclassical Opt.
7
, 135
–138
(2005
).18.
S.
Huang
, “Remote state preparation using positive operator-valued measures
,” Phys. Lett. A
377
, 448
–451
(2013
).19.
M. G. A.
Paris
, M.
Cola
, and R.
Bonifacio
, “Remote state preparation and teleportation in phase space
,” J. Opt. B: Quantum Semiclassical Opt.
5
, S360
–S364
(2003
).20.
Z.
Kurucz
, P.
Adam
, Z.
Kis
, and J.
Janszky
, “Continuous variable remote state preparation
,” Phys. Rev. A
72
, 052315
(2005
).21.
Z.
Kurucz
, P.
Adam
, and J.
Janszky
, “Remote state preparation in quadrature basis
,” Acta Phys. Hung. B
26
, 319
–326
(2006
).22.
E.
Wu
, Y. H.
Ma
, L. X.
Zeng
, and X. A.
Zhang
, “Continuous variable remote state preparation with a two-mode squeezed vacuum state
,” Int. J. Theor. Phys.
47
, 1600
–1605
(2008
).23.
A.
Holevo
, Statistical Structure of Quantum Theory
(Springer
, 2001
).24.
H.
Halvorson
, “The Einstein-Podolsky-Rosen state maximally violates Bell’s inequalities
,” Lett. Math. Phys.
53
, 321
–329
(2000
).25.
M.
Sirugue
, Improper States of Canonical Commutation Relations for a Finite Number of Degrees of Freedom
(CNRS
, Marseille
, 1971
), preprint 71/p. 421.26.
S.
Huang
, “Generalized Einstein-Podolsky-Rosen states
,” J. Math. Phys.
48
, 112102
(2007
).27.
It is unclear how one would prepare an EPR state in the lab, and even if one succeeded, it would be indistinguishable from a Schrödinger state for any error bound on a finite collection of observables.
28.
B.
Blackadar
, Operator Algebras: Theory of C*-Algebras and von Neumann Algebras
(Springer
, 2006
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.