A reduction of orbits of finite reflection groups to their reflection subgroups is produced by means of projection matrices, which transform points of the orbit of any group into points of the orbits of its subgroup. Projection matrices and branching rules for orbits of finite Coxeter groups of non-crystallographic type are presented. The novelty in this paper is producing the branching rules that involve non-crystallographic Coxeter groups. Moreover, these branching rules are relevant to any application of non-crystallographic Coxeter groups including molecular crystallography and encryption.
REFERENCES
1.
M.
Bodner
, J.
Patera
, and M.
Szajewska
, “C70, C80, C90 and carbon nanotubes by breaking of the icosahedral symmetry of C60
,” Acta Crystallogr., Sect. A: Found. Crystallogr.
69
(6
), 583
–591
(2013
).2.
M.
Bodner
, J.
Patera
, and M.
Szajewska
, “Breaking of icosahedral symmetry: C60 to C70
,” PLoS One
9
(3
), e84079
(2014
).3.
M.
Bodner
, E.
Bourret
, J.
Patera
, and M.
Szajewska
, “Icosahedral symmetry breaking: C60 to C78, C96 and to related nanotubes
,” Acta Crystallogr., Sect. A: Found. Crystallogr.
70
(6
), 650
–655
(2014
).4.
M.
Bodner
, E.
Bourret
, J.
Patera
, and M.
Szajewska
, “Icosahedral symmetry breaking: C60 to C84, C108 and to related nanotubes
,” Acta Crystallogr., Sect. A: Found. Crystallogr.
71
(3
), 297
–300
(2015
).5.
M.
Bodner
, J.
Patera
, and M.
Szajewska
, “Polytope contractions within icosahedral symmetry
,” Can. J. Phys.
92
(11
), 1446
–1452
(2014
).6.
N.
Bourbaki
, Groupes et algèbres de Lie
(Springer Science and Business Media
, Hermann, Paris
, 1968
), Chap. IV–VI.7.
M. R.
Bremner
, R. V.
Moody
, and J.
Patera
, Tables of Dominant Weight Multiplicities for Representations of Simple Lie Algebras
(Marcel Dekker
, New York
1985
), p. 340
, ISBN: 0-8247-7270-9.8.
G.
Chadzitaskos
, J.
Patera
, and M.
Szajewska
, “Polytopes vibrations within Coxeter group symmetries
,” Eur. Phys. J. B
89
, 132
(2016
).9.
L.
Chen
, R. V.
Moody
, and J.
Patera
, “Non-crystallographic root systems
,” in Quasicrystals and Discrete Geometry
, Volume 10 Fields Institute Monograph Series, edited by J.
Patera
(American Mathematical Society
, 1998
), pp. 135
–178
.10.
P.-P.
Dechant
, C.
Boehm
, and R.
Twarock
, “Affine extensions of non-crystallographic Coxeter groups induced by projection
,” J. Math. Phys.
54
, 93508
(2013
).11.
S. L.
Devadoss
, S.
Forcey
, S.
Reisdorf
, and P.
Showers
, “Convex polytopes from nested posets
,” Eur. J. Combinatorics
43
, 229
–248
(2015
).12.
E. B.
Dynkin
, Semisimple Subalgebras of Semisimple Lie Algebras
, Series 2 (AMS Translations
, 1957
), Vol. 6, pp. 111
–244
.13.
B.
Fauser
, P. D.
Jarvis
, R. C.
King
, and B. G.
Wybourne
, “New branching rules induced by plethysm
,” J. Phys. A: Math. Gen.
39
, 2611
–2655
(2006
).14.
A.
Fring
and C.
Korff
, “Affine Roda field theories related to Coxeter groups of non-crystallographic type
,” Nucl. Phys. B
729
, 361
–386
(2005
).15.
F.
Gingras
, J.
Patera
, and R. T.
Sharp
, “Orbit-orbit branching rules between simple low-rank algebras and equal-rank subalgebras
,” J. Math. Phys.
33
, 1618
–1626
(1992
).16.
S.
Grimm
and J.
Patera
, “Decomposition of tensor products of the fundamental representations of E8
,” in Advances in Mathematical Sciences—CRM’s 25 Years
, Volume 11 of CRM proceedings and lecture notes, edited by L.
Vinet
(American Mathematical Society
, Providence, Rhode Island
, 1997
), pp. 329
–355
.17.
L. C.
Grove
and C. T.
Benson
, Finite Reflection Groups
(Springer
, Heidelberg
, 1985
).18.
R. C.
King
, “Branching rules for classical Lie groups using tensor and spinor methods
,” J. Phys. A: Math. Gen.
8
(4
), 429
–449
(1975
).19.
G. J.
Kleywegt
, “Use of non-crystallographic symmetry in protein structure refinement
,” Acta Crystallogr., Sect. D: Biol. Crystallogr.
52
, 842
–857
(1996
).20.
M.
Koca
, K.
Ramazan
, and M.
Al-Barwani
, “non-crystallographic Coxeter group H4 in E8
,” J. Phys. A
34
, 11201
–11213
(2001
).21.
P.
Kramer
, Z.
Papadopolos
, and D.
Zeidler
, “Concepts of symmetry in quasicrystals: Root lattice D6, icosahedral group, etc.
,” AIP Conf. Proc.
266
, 179
(1992
).22.
M.
Larouche
, M.
Nesterenko
, and J.
Patera
, “Branching rules for orbits of the Weyl group of the Lie algebra An
,” J. Phys. A: Math. Theor.
42
, 485203
(2009
); e-print arXiv:0909.2337.23.
M.
Larouche
and J.
Patera
, “Branching rules for Weyl group orbits of simple Lie algebras Bn, Cn and Dn
,” J. Phys. A: Math. Theor.
44
, 115203
(2011
).24.
W. G.
McKay
, J.
Patera
, and D.
Sankoff
, “The computation of branching rules for representations of semisimple Lie algebras
,” in Computers in Nonassociative Rings and Algebras
, edited by J.
Beck
and B.
Kolman
(Academic Press
, New York
, 1977
).25.
R. V.
Moody
and J.
Patera
, “Computation of character decompositions of class functions on compact semisimple Lie groups
,” Math. Comput.
48
, 799
–827
(1987
).26.
R. V.
Moody
and J.
Patera
, “Fast recursion formula for weight multiplicities
,” Bull. Am. Math. Soc.
7
, 237
–242
(1982
).27.
R. V.
Moody
and J.
Patera
, “Quasicrystals and icosians
,” J. Phys. A: Math. Gen.
26
, 2829
–2853
(1993
).28.
J.
Ostrowski
, J.
Linderoth
, F.
Rossi
, and S.
Smriglio
, “Orbital branching
,” Math. Program. Ser. A
126
, 147
–178
(2011
).29.
J.
Patera
and R. T.
Sharp
, “Branching rules for representations of simple Lie algebras through Weyl group orbit reduction
,” J. Phys. A: Math. Gen.
22
, 2329
(1989
).30.
J.
Patera
and R.
Twarock
, “Affine extension of non-crystallographic Coxeter groups and quasicrystals
,” J. Phys. A: Math. Gen.
35
, 1551
–1574
(2002
).31.
32.
R. T.
Sharp
and M.
Thoma
, “Orbit-orbit branching rules between classical simple Lie algebras and maximal reductive subalgebras
,” J. Math. Phys.
37
, 6570
–6581
(1996
).33.
R. T.
Sharp
and M.
Thoma
, “Orbit-orbit branching rules for families of classical Lie algebra-subalgebra pairs
,” J. Math. Phys.
37
, 4750
–4757
(1996
).34.
O. P.
Shcherbak
, “Wavefronts and reflection groups
,” Uspekhi Mat. Nauk
43
(3
), 149
(1988
).35.
R.
Slansky
, “Group theory for unified model building
,” Phys. Rep.
79
, 1
–128
(1981
).36.
M.
Szajewska
, “Polytope contractions within Weyl group symmetries
,” Math. Phys. Anal. Geom.
19
(3
), 15
(2016
).37.
B.
Thomas
, R.
Twarock
, M.
Valiunas
, and E.
Zappa
, “Nested polytopes with non-crystallographic symmetry induced by projection
,” Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture, 29 Jul - 02 Aug 2015
(University of BaltimoreTessellations Publishing
, USA
, 2015
).38.
R.
Twarock
, M.
Valiunas
, and E.
Zappa
, “Orbits of crystallographic embedding of non-crystallographic groups and applications to virology
,” Acta Crystallogr., Sect. A: Found. Adv.
71
, 569
–582
(2015
).39.
E.
Zappa
, E. C.
Dykeman
, J. A.
Geraets
, and R.
Twarock
, “A group theoretical approach to structural transitions of icosahedral quasicrystals and point arrays
,” J. Phys. A: Math. Theor.
49
, 175203
(2016
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.