We consider the stability of standing waves for the focusing nonlinear Schrödinger equation with an inverse-square potential. Using the profile decomposition arguments, we show that in the L2-subcritical case, i.e., 0<α<4d, the sets of ground state standing waves are orbitally stable. In the L2-critical case, i.e., α=4d, we show that ground state standing waves are strongly unstable by blow-up.

1.
H.
Berestycki
and
T.
Cazenave
, “
Instabilité des états stationaires dans les equations de Schrödinger equations et de Klein-Gordon non linéaires
,”
C. R. Acad. Sci. Paris
293
,
489
492
(
1981
).
2.
A.
Bensouilah
, “
L2 concentration of blow-up solutions for the mass-critical NLS with inverse-square potential
,” preprint arXiv:1803.05944 (
2018
).
3.
A.
Bensouilah
and
V. D.
Dinh
, “
Mass concentration and characterization of finite time blow-up solutions for the nonlinear Schrödinger equation with inverse-square potential
,” preprint arXiv:1804.08752 (
2018
).
4.
T.
Cazenave
and
P. L.
Lions
, “
Orbital stability of standing waves for some nonlinear Schrdinger equations
,”
Commun. Math. Phys.
85
,
549
561
(
1982
).
5.
J. M.
Bouclet
and
H.
Mizutani
, “
Uniform resolvent and Strichartz estimates for Schrödinger equations with critical singularities
,”
Trans. Am. Math. Soc.
370
,
7293
7333
(
2018
).
6.
N.
Burq
,
F.
Planchon
,
J.
Stalker
, and
A. S.
Tahvildar-Zadeh
, “
Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential
,”
J. Funct. Anal.
203
,
519
549
(
2003
).
7.
H.
Brézis
and
E. H.
Lieb
, “
A relation between pointwise convergence of functions and convergence of functionals
,”
Proc. Am. Math. Soc.
88
,
486
490
(
1983
).
8.
H. E.
Camblong
,
L. N.
Epele
,
H.
Fanchiotti
, and
C. A.
Garcia Canal
, “
Quantum anomaly in molecular physics
,”
Phys. Rev. Lett.
87
,
220402
(
2001
).
9.
K. M.
Case
, “
Singular potentials
,”
Phys. Rev.
80
,
797
806
(
1950
).
10.
T.
Cazenave
,
Semilinear Schrödinger Equations
, Courant Lecture Notes in Mathematics, Courant Institute of Mathematical Sciences, (
American Mathematical Society
,
2003
), Vol. 10.
11.
E.
Csobo
and
F.
Genoud
, “
Minimal mass blow-up solutions for the L2 critical NLS with inverse-square potential
,”
Nonlinear Anal.
168
,
110
129
(
2018
).
12.
V. D.
Dinh
, “
Global existence and blow-up for a class of the focusing nonlinear Schrödinger equation with inverse-square potential
,” preprint arXiv:1711.04792 (
2017
).
13.
B.
Feng
and
H.
Zhang
, “
Stability of standing waves for the fractional Schrödinger-Hartree equation
,”
J. Math. Anal. Appl.
460
,
352
364
(
2018
).
14.
P.
Gérard
, “
Description du defaut de compacité de l’injection de Sobolev
,”
ESAIM Control Optim. Calc. Var.
3
,
213
233
(
1998
).
15.
R. T.
Glassey
, “
On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation
,”
J. Math. Phys.
18
,
1794
1797
(
1977
).
16.
Q.
Guo
and
S. H.
Zhu
, “
Sharp threshold of blow-up and scattering for the fractional Hartree equation
,”
J. Differ. Equations
264
,
2802
2832
(
2018
).
17.
T.
Hmidi
and
S.
Keraani
, “
Blow-up theory for the critical nonlinear Schrödinger equation revisited
,”
Int. Math. Res. Not.
2005
(
46
),
2815
2828
.
18.
H.
Kalf
,
U. W.
Schmincke
,
J.
Walter
and
R.
Wust
, “
On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials
,” in
Spectral Theory and Differential Equations
, Lecture Notes in Mathematics (
Springer
,
Berlin
,
1975
), Vol. 448, pp.
182
226
.
19.
R.
Killip
,
J.
Murphy
,
M.
Visan
, and
J.
Zheng
, “
The focusing cubic NLS with inverse-square potential in three space dimensions
,”
Differ. Integr. Equations
30
,
161
206
(
2017
).
20.
R.
Killip
,
C.
Miao
,
M.
Visan
,
J.
Zhang
, and
J.
Zheng
, “
Sobolev spaces adapted to the Schrödinger operator with inverse-square potential
,”
Math. Z.
288
,
1273
1298
(
2017
).
21.
R.
Killip
,
C.
Miao
,
M.
Visan
,
J.
Zhang
, and
J.
Zheng
, “
The energy-critical NLS with inverse-square potential
,”
Discrete Contin. Dyn. Syst.
37
,
3831
3866
(
2017
).
22.
J.
Lu
,
C.
Miao
, and
J.
Murphy
, “
Scattering in H1 for the intercritical NLS with an inverse-square potential
,”
J. Differ. Equations
264
(
5
),
3174
3211
(
2018
).
23.
T.
Ogawa
and
Y.
Tsutsumi
, “
Blow-up of H1-solutions for the nonlinear Schrödinger equation
,”
J. Differ. Equations
92
,
317
330
(
1991
).
24.
N.
Okazawa
,
T.
Suzuki
, and
T.
Yokota
, “
Energy methods for abstract nonlinear Schrödinger equations
,”
Evol. Equations Control Theory
1
,
337
354
(
2012
).
25.
C.
Peng
and
Q.
Shi
, “
Stability of standing waves for the fractional nonlinear Schrödinger equation
,”
J. Math. Phys.
59
,
011508
(
2018
).
26.
P.
Trachanas
and
N. B.
Zographopoulos
, “
Orbital stability for the Schrödinger operator involving inverse square potential
,”
J. Differ. Equations
259
,
4989
5016
(
2015
).
27.
M.
Weinstein
, “
Nonlinear Schrödinger equations and sharp interpolation estimates
,”
Commun. Math. Phys.
87
,
567
576
(
1983
).
28.
J.
Zhang
and
J.
Zheng
, “
Scattering theory for nonlinear Schrödinger with inverse-square potential
,”
J. Funct. Anal.
267
,
2907
2932
(
2014
).
29.
J.
Zhang
, “
Stability of attractive Bose-Einstein condensates
,”
J. Stat. Phys.
101
,
731
746
(
2000
).
30.
G.
Fibich
,
The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse
(
Springer
,
2015
).
31.
S. H.
Zhu
,
J.
Zhang
, and
H.
Yang
, “
Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation
,”
Dyn. Partial Differ. Equations
7
(
2
),
187
205
(
2010
).
32.
S. H.
Zhu
, “
On the blow-up solutions for the nonlinear fractional Schrödinger equation
,”
J. Differ. Equations
261
,
1506
1531
(
2016
).
33.
S. H.
Zhu
, “
Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities
,”
J. Evol. Equations
17
,
1003
1021
(
2017
).
You do not currently have access to this content.