Dirac structures are geometric objects that generalize both Poisson structures and presymplectic structures on manifolds. They naturally appear in the formulation of constrained mechanical systems. In this paper, we show that the evolution equations for nonequilibrium thermodynamics admit an intrinsic formulation in terms of Dirac structures, both on the Lagrangian and the Hamiltonian settings. In the absence of irreversible processes, these Dirac structures reduce to canonical Dirac structures associated with canonical symplectic forms on phase spaces. Our geometric formulation of nonequilibrium thermodynamic thus consistently extends the geometric formulation of mechanics, to which it reduces in the absence of irreversible processes. The Dirac structures are associated with the variational formulation of nonequilibrium thermodynamics developed in the work of Gay-Balmaz and Yoshimura, J. Geom. Phys. 111, 169–193 (2017a) and are induced from a nonlinear nonholonomic constraint given by the expression of the entropy production of the system.

1.
Appell
,
P.
, “
Sur les liaisons exprimées par des relations non linéaires entre les vitesses
,”
C.R. Acad. Sci. Paris
152
,
1197
1199
(
1911
).
2.
Bloch
,
A. M.
,
Nonholonomic Mechanics and Control
, Volume 24 of Interdisciplinary Applied Mathematics (
Springer-Verlag
,
New York
,
2003
), with the collaboration of Baillieul, J., Crouch, P., and Marsden, J., and with scientific input from Krishnaprasad, P. S., Murray, R. M., and Zenkov, D.
3.
Bloch
,
A. M.
and
Crouch
,
P. E.
, “
Representations of Dirac structures on vector spaces and nonlinear L–C circuits
,” in
Differential Geometry and Control, Boulder, CO, 1997
(
American Mathematical Society
,
Providence, RI
,
1997
), Vol. 64, pp.
103
117
.
4.
Carathéodory
,
C.
, “
Untersuchungen über die grundlagen der thermodynamik
,”
Math. Ann.
67
,
355
386
(
1909
).
5.
Cendra
,
H.
and
Grillo
,
S. D.
, “
Lagrangian systems with higher order constraints
,”
J. Math. Phys.
48
052904
(
2007
).
6.
Cendra
,
H.
,
Ibort
,
A.
,
de León
,
M.
, and
de Diego
,
D.
, “
A generalization of Chetaev’s principle for a class of higher order nonholonomic constraints
,”
J. Math. Phys.
45
,
2785
(
2004
).
7.
Chetaev
,
N. G.
, “
On Gauss principle
,”
Izv. Fiz-Mat. Obsc. Kazan Univ. Ser. 3
6
,
68
71
(
1932–1933
), in Russian.
8.
Courant
,
T. J.
, “
Dirac manifolds
,”
Trans. Am. Math. Soc.
319
,
631
661
(
1990
).
9.
Courant
,
T.
and
Weinstein
,
A.
, “
Beyond Poisson structures
,” in
Séminaire Sud-Rhodanien de Géométrie VIII. Travaux en Cours 27
(
Hermann
,
Paris
,
1988
), pp.
39
49
.
10.
Dirac
,
P. A. M.
, “
Generalized Hamiltonian dynamics
,”
Can. J. Math.
2
,
129
148
(
1950
).
11.
Dorfman
,
I.
,
Dirac Structures and Integrability of Nonlinear Evolution Equations
, Nonlinear Science Theory and Applications (
John Wiley & Sons Ltd.
,
Chichester
,
1993
).
12.
Eberard
,
D.
,
Maschke
,
B. M.
, and
van der Schaft
,
A. J.
, “
An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes
,”
Rep. Math. Phys.
60
(
2
),
175
198
(
2007
).
13.
Gay-Balmaz
,
F.
, “
A variational derivation of the thermodynamics of a moist atmosphere with irreversible processes
,” preprint arXiv:1701.03921 (
2017
).
14.
Gay-Balmaz
,
F.
and
Yoshimura
,
H.
, “
A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems
,”
J. Geom. Phys.
111
,
169
193
(
2017a
).
15.
Gay-Balmaz
,
F.
and
Yoshimura
,
H.
, “
A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems
,”
J. Geom. Phys.
111
,
194
212
(
2017b
).
16.
Gay-Balmaz
,
F.
and
Yoshimura
,
H.
, “
Variational discretization for the nonequilibrium thermodynamics of simple systems
,”
Nonlinearity
(to be published); e-print arXiv:1702.02594v1.
17.
Gay-Balmaz
,
F.
and
Yoshimura
,
H.
, “
A free energy Lagrangian variational formulation of the Navier-Stokes-Fourier system
,”
Int. J. Geom. Methods Mod. Phys.
(to be published); e-print arXiv:1706.09010v1.
18.
Gibbs
,
J. W.
, “
Graphical methods in the thermodynamics of fluids
,” in
Transactions of the Connecticut Academy of Arts and Sciences
(
1873a
), Vol. 2, pp.
309
342
.
19.
Gibbs
,
J. W.
, “
A method of geometrical representation of the thermodynamic properties of substances by means of surfaces
,” in
Transactions of the Connecticut Academy of Arts and Sciences
(
1873b
), Vol. 2, pp.
382
404
.
20.
Gorelyshev
,
I. V.
and
Neishtadt
,
A. I.
, “
On the adiabatic perturbation theory for systems with impacts
,”
J. Appl. Math. Mech.
70
,
4
17
(
2006
).
21.
Gruber
,
C.
, “
Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston
,”
Eur. J. Phys.
20
,
259
266
(
1999
).
22.
Gruber
,
C.
and
Frachebourg
,
L.
, “
On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states
,”
Physica A
272
,
392
428
(
1999
).
23.
Hermann
,
R.
,
Geometry, Physics and Systems
(
Dekker
,
New York
,
1973
).
24.
Kozlov
,
V. V.
, “
To the piston problem
,”
Dokl. Math.
72
(
1
),
634
637
(
2005
).
25.
Marle
,
C.-M.
, “
Various approaches to conservative and nonconservative non-holonomic systems
,”
Rep. Math. Phys.
42
(
1-2
),
211
229
(
1998
).
26.
Mrugala
,
R.
, “
Geometrical formulation of equilibrium phenomenological thermodynamics
,”
Rep. Math. Phys.
14
,
419
427
(
1978
).
27.
Mrugala
,
R.
, “
A new representation of thermodynamic phase space
,”
Bull. Pol. Acad. Sci.
28
(
1
),
13
18
(
1980
).
28.
Mrugala
,
R.
,
Nulton
,
J. D.
,
Schon
,
J. C.
, and
Salamon
,
P.
, “
Contact structure in thermodynamic theory
,”
Rep. Math. Phys.
29
,
109
121
(
1991
).
29.
Oster
,
G. F.
,
Perelson
,
A. S.
, and
Katchalsky
,
A.
, “
Network thermodynamics: dynamic modelling of biophysical systems
,”
Q. Rev. Biophys.
6
(
1
),
1
134
(
1973
).
30.
Pironneau
,
Y.
, “
Sur les liaisons non holonomes non linéaires, déplacements virtuels à travail nul, conditions de Chetaev
,” in
Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino 1982
(
1983
), Vol. 117, pp.
671
686
, Atti della Accademia delle Scienze di Torino.
31.
Sinai
,
Ya. G.
, “
Dynamics of a heavy particle surrounded by a finite number of light particles
,”
Theor. Math. Phys.
121
,
1351
1357
(
1999
).
32.
Stueckelberg
,
E. C. G.
and
Scheurer
,
P. B.
,
Thermocinétique Phénoménologique Galiléenne
(
Birkhäuser
,
1974
).
33.
Tulczyjew
,
W. M.
, “
The Legendre transformation
,”
Ann. Inst. Henri Poincare, Sect. A
27
(
1
),
101
114
(
1977
).
34.
van der Schaft
,
A. J.
and
Maschke
,
B. M.
, “
The Hamiltonian formulation of energy conserving physical systems with external ports
,”
Arch. Elektron. Übertragungstechnik
49
(
5/6
),
362
371
(
1995a
).
35.
van der Schaft
,
A. J.
and
Maschke
,
B. M.
, “
Mathematical modelling of constrained Hamiltonian systems
,” in
Proceedings of IFAC Symposium NOLCOS, Tahoe City, CA
(
International Federation of Automatic Control
,
1995b
), pp.
678
683
.
36.
Wright
,
P.
, “
A simple piston problem in one dimension
,”
Nonlinearity
19
,
2365
2389
(
2006
).
37.
Yoshimura
,
H.
and
Marsden
,
J. E.
, “
Dirac structures in Lagrangian mechanics. Part I: Implicit Lagrangian systems
,”
J. Geom. Phys.
57
,
133
156
(
2006a
).
38.
Yoshimura
,
H.
and
Marsden
,
J. E.
, “
Dirac structures in Lagrangian mechanics. Part II: Variational structures
,”
J. Geom. Phys.
57
,
209
250
(
2006b
).
You do not currently have access to this content.