In this paper, we propose a counterexample to the validity of the comparison principle and of the sub- and supersolution method for nonlocal problems like the stationary Kirchhoff equation. This counterexample shows that in general smooth bounded domains in any dimension, these properties cannot hold true if the nonlinear nonlocal term M(u2) is somewhere increasing with respect to the H01-norm of the solution. Comparing with the existing results, this fills a gap between known conditions on M that guarantee or prevent these properties and leads to a condition that is necessary and sufficient for the validity of the comparison principle. It is worth noting that equations similar to the one considered here have gained interest recently for appearing in models of thermo-convective flows of non-Newtonian fluids or of electrorheological fluids, among others.

1.
Alves
,
C. O.
and
Corrêa
,
F. J. S. A.
,
Commun. Appl. Nonlinear Anal.
8
,
43
(
2001
).
2.
Alves
,
C. O.
and
Corrêa
,
F. J. S. A.
,
J. Math. Phys.
56
,
051501
(
2015
).
3.
Alves
,
C. O.
,
Corrêa
,
F. J. S. A.
, and
Ma
,
T. F.
,
Comput. Math. Appl.
49
,
85
(
2005
).
4.
Alves
,
C. O.
and
Covei
,
D.-P.
,
Nonlinear Anal.: Real World Appl.
23
,
1
(
2015
).
5.
Caglioti
,
E.
,
Lions
,
P.-L.
,
Marchioro
,
C.
, and
Pulvirenti
,
M.
,
Commun. Math. Phys.
143
,
501
(
1992
).
6.
Cheng
,
B.
,
Wu
,
X.
, and
Liu
,
J.
,
Nonlinear Differ. Equations Appl.
19
,
521
(
2012
).
7.
Corrêa
,
F. J. S. A.
and
Figueiredo
,
G. M.
,
Bull. Aust. Math. Soc.
74
,
263
(
2006
).
8.
Dai
,
G.
and
Hao
,
R.
,
J. Math. Anal. Appl.
359
,
275
(
2009
).
9.
García-Melián
,
J.
and
Iturriaga
,
L.
,
Proc. Am. Math. Soc.
144
,
3405
(
2016
).
10.
Kirchhoff
,
G.
,
Mechanik
(
Teubner
,
Leipzig
,
1883
); available at https://archive.org/details/vorlesungenberm04kircgoog.
11.
Ma
,
T. F.
,
Nonlinear Anal.
63
,
e1967
(
2005
).
12.
Song
,
S.-Z.
,
Chen
,
S.-J.
, and
Tang
,
C.-L.
,
Discrete Contin. Dyn. Syst.
36
,
6453
(
2016
).
13.
Tang
,
X. H.
and
Cheng
,
B.
,
J. Differ. Equations
261
,
2384
(
2016
).
14.
Villaggio
,
P.
,
Mathematical Models for Elastic Structures
(
Cambridge University Press
,
Cambridge
,
1997
), pp. xii+679.
You do not currently have access to this content.