In this paper, we study the global existence and finite time blow-up of positive solutions for a parabolic system on hyperbolic space. Using the heat semigroup and constructing subsolutions and supersolutions, we obtain the Fujita type results. In the case of a critical exponent, the critical exponent is not a blow-up exponent.

1.
Armstrong
,
S. N.
and
Sirakov
,
B.
, “
Nonexistence of positive supersolutions of elliptic equations via the maximum principle
,”
Commun. Partial Differ. Equations
36
(
11
),
2011
2047
(
2011
).
2.
Bai
,
X. L.
,
Zheng
,
S. N.
, and
Wang
,
W.
, “
Critical exponent for parabolic system with time-weighted sources in bounded domain
,”
J. Funct. Anal.
265
(
6
),
941
952
(
2013
).
3.
Bandle
,
C.
,
Pozio
,
M. A.
, and
Tesei
,
A.
, “
The Fujita exponent for the Cauchy problem on hyperbolic space
,”
J. Differ. Equations
251
(
8
),
2143
2163
(
2011
).
4.
Banica
,
V.
and
Duyckaerts
,
T.
, “
Global existence, scattering and blow-up for the focusing NLS on the hyperbolic space
,”
Dyn. Partial Dier. Equ.
12
(
1
),
53
96
(
2015
).
5.
Chen
,
S. H.
, “
Global existence and nonexistence for some degenerate and quasilinear parabolic systems
,”
J. Differ. Equations
245
(
4
),
1112
1136
(
2008
).
6.
Davies
,
E. B.
,
Heat Kernel and Spectral Theory
(
Cambridge University Press
,
Cambridge, UK
,
1989
).
7.
Escobedo
,
M.
and
Herrero
,
M. A.
, “
Boundedness and blow up for a semilinear reaction-diffusion system
,”
J. Differ. Equations
89
(
1
),
176
202
(
1991
).
8.
Hayakawa
,
K.
, “
On nonexistence of global solutions of some semilinear parabolic differential equations
,”
Proc. Jpn. Acad. Ser. A
49
,
503
505
(
1973
).
9.
Li
,
Y. X.
,
Deng
,
W. B.
, and
Xie
,
C. H.
, “
Global existence and nonexistence for degenerate parabolic systems
,”
Proc. Am. Math. Soc.
130
(
12
),
3661
3670
(
2002
).
10.
Mancini
,
G.
and
Sandeep
,
K.
, “
On a semilinear elliptic equation in Hn
,”
Ann. Sc. Norm. Super. Pisa Cl. Sci.
7
(
5
),
635
671
(
2008
).
11.
Meier
,
P.
, “
On the critical exponent for reaction-diffusion equations
,”
Arch. Ration. Mech. Anal.
109
(
1
),
63
71
(
1990
).
12.
Quittner
,
P.
and
Souplet
,
Ph.
,
Superlinear Parabolic Problems: Blow-Up, Global Existence and Steady States
, Birkhäuser Advanced Texts (
Basler Lehrbücher Birkhäuser Verlag
,
Basel
,
2007
).
13.
Uda
,
Y.
, “
The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations
,”
Z. Angew. Math. Phys.
46
(
3
),
366
383
(
1995
).
14.
Wang
,
Z. Y.
and
Yin
,
J. X.
, “
A note on semilinear heat equation in hyperbolic space
,”
J. Differ. Equations
256
(
3
),
1151
1156
(
2014
).
You do not currently have access to this content.