Using the variational method, we study superlinear Dirac equations with perturbations from symmetry. We establish the variational setting and obtain infinite many periodic solutions.

1.
Ackermann
,
N.
, “
On a periodic Schrödinger equation with nonlocal superlinear part
,”
Math. Z.
248
,
423
443
(
2004
).
2.
Alama
,
S.
and
Li
,
Y. Y.
, “
Existence of solutions for semilinear elliptic equations with indefinite linear part
,”
J. Differ. Equations
96
,
89
115
(
1992
).
3.
Bahri
,
A.
and
Berestycki
,
H.
, “
Forced vibrations of superquadratic Hamiltonian systems
,”
Acta Math.
152
,
143
197
(
1984
).
4.
Booss-Bavnbek
,
B.
, “
Unique continuation property for Dirac operator, revisited
,”
Contemp. Math.
258
,
21
32
(
2000
).
5.
Bartsch
,
T.
and
Ding
,
Y. H.
, “
Solutions of nonlinear Dirac equations
,”
J. Differ. Equations
226
,
210
249
(
2006
).
6.
Bartsch
,
T.
and
Ding
,
Y. H.
, “
Periodic solutions of superlinear beam and membrane equations with perturbations from symmetry
,”
Nonlinear Anal.
44
,
727
748
(
2001
).
7.
Bartsch
,
T.
and
Ding
,
Y. H.
, “
On a nonlinear Schrödinger equation with periodic potential
,”
Math. Ann.
313
,
15
37
(
1999
).
8.
Bjorken
,
J. D.
and
Drell
,
S. D.
,
Relativistic Quantum Fields
(
McGraw-Hill
,
1965
).
9.
Brüll
,
L.
and
Kapellen
,
H.-J.
, “
Periodic solutions of one-dimensional nonlinear Schrödinger equations
,”
Acta Math. Hung.
54
,
191
195
(
1989
).
10.
Cerami
,
G.
, “
Un criterio di esistenza per i punti criticisu varieta illimitate
,”
Rend, Acad. Sci. Lst. Ist. Lombardo
112
,
332
336
(
1978
).
11.
Ding
,
Y. H.
, “
Semi-classical ground states concerntrating on the nonlinear potential for a Dirac equation
,”
J. Differ. Equations
249
,
1015
1034
(
2010
).
12.
Ding
,
Y. H.
,
Variational Methods for Strongly Indefinite Problems
, Volume 7 of Interdisciplinary Mathematical Sciences (
World Scientific Publishing
,
2007
) .
13.
Ding
,
Y. H.
and
Liu
,
X. Y.
, “
Semi-classical limits of ground states of a nonlinear Dirac equation
,”
J. Differ. Equations
252
,
4962
4987
(
2012
).
14.
Ding
,
Y. H.
and
Liu
,
X. Y.
, “
Periodic waves of nonlinear Dirac equations
,”
Nonlinear Anal.
109
,
252
267
(
2014
).
15.
Ding
,
Y. H.
and
Liu
,
X. Y.
, “
Periodic solutions of a Dirac equation with concave and convex nonlinearities
,”
J. Differ. Equations
258
,
3567
3588
(
2015
).
16.
Ding
,
Y. H.
and
Liu
,
X. Y.
, “
Periodic solutions of an asymptotically linear Dirac equation
,”
Ann. Math. Pure Appl.
196
,
717
(
2016
).
17.
Ding
,
Y. H.
and
Ruf
,
B.
, “
Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities
,”
SIAM J. Math. Anal.
44
,
3755
3785
(
2012
).
18.
Ding
,
Y. H.
and
Ruf
,
B.
, “
Solutions of a nonlinear Dirac equation with external fields
,”
Arch. Ration. Mech. Anal.
190
,
1007
1032
(
2008
).
19.
Ding
,
Y. H.
and
Wei
,
J. C.
, “
Stationary states of nonlinear Dirac equations with general potentials
,”
Rev. Math. Phys.
20
,
1007
1032
(
2008
).
20.
Esteban
,
M. J.
and
Séré
,
E.
, “
An overview on linear and nonlinear Dirac equations
,”
Discrete Contin. Dyn. Syst.
8
,
381
397
(
2002
).
21.
Esteban
,
M. J.
and
Séré
,
E.
, “
Stationary states of the nonlinear Dirac equation: A variational approach
,”
Commun. Math. Phys.
171
,
323
350
(
1995
).
22.
Gentile
,
G.
and
Procesi
,
M.
, “
Periodic solutions for the Schrödinger equation with nonlocal smoothing nonlinearities in higher dimension
,”
J. Differ. Equations
245
,
3253
3326
(
2008
).
23.
Li
,
G. B.
and
Szulkin
,
A.
, “
An asymptotically periodic Schrödinger equation with indefinite linear part
,”
Commun. Contemp. Math.
4
,
763
776
(
2002
).
24.
Long
,
Y.
, “
Periodic solutions of superquadratic Hamiltonian systems with bounded forcing terms
,”
Math. Z.
203
,
453
467
(
1990
).
25.
Mawhin
,
J.
and
Willem
,
M.
, “
Multiple solutions of the periodic BVP for some forced pendulum type equations
,”
J. Differ. Equations
52
,
264
287
(
1984
).
26.
Merle
,
F.
Existence of stationary states for nonlinear Dirac equations
,”
J. Differ. Equations
74
,
50
68
(
1988
).
27.
Rabinowitz
,
P. H.
,
Minimax Methods in Critical Point Theory with Applications to Differential Equations
, Volume 65 of Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics (
AMS
,
Providence, RI
,
1986
).
28.
Ranada
,
A. F.
, “
Classical nonlinear Dirac field models of extended particles
,” in
Quantum Theory, Groups, Fields and Particles
, edited by
Barut
,
A. O.
(
Reidel
,
Amsterdam
,
1982
).
29.
Roy Chowdhury
,
A.
,
Paul
,
S.
, and
Sen
,
S.
, “
Periodic solutions of the mixed nonlinear Schrödinger equation
,”
Phys. Rev. D
32
(
3
),
3233
3237
(
1985
).
30.
Struwe
,
M.
,
Variational Methods
(
Springer
,
Berlin
,
1990
).
31.
Tanaka
,
K.
, “
Infinitely many periodic solutions for the equation: utt − uxx ± |u|p−1u = f( x;t). II
,”
Trans. Am. Math. Soc.
307
,
615
645
(
1988
).
32.
Tanaka
,
K.
, “
Multiple periodic solutions for a superlinear forced wave equation
,”
Ann. Math. Pure Appl.
162
,
43
76
(
1992
).
33.
Thaller
,
B.
,
The Dirac Equation
, Texts and Monographs in Physics (
Springer
,
Berlin
,
1992
).
34.
Troestler
,
C.
and
Willem
,
M.
, “
Nontrivial solution of a semilinear Schrödinger equation
,”
Commun. Partial Differ. Equations
21
,
1431
1449
(
1996
).
35.
Zhao
,
F. K.
and
Ding
,
Y. H.
, “
Infinitely many solutions for a class of nonlinear Dirac equations without symmetry
,”
Nonlinear Anal.
70
,
921
935
(
2009
).
You do not currently have access to this content.