We consider Rayleigh-Bénard convection as modeled by the Boussinesq equations, in the case of infinite Prandtl numbers and with no-slip boundary condition. There is a broad interest in bounds of the upwards heat flux, as given by the Nusselt number Nu, in terms of the forcing via the imposed temperature difference, as given by the Rayleigh number in the turbulent regime Ra 1 . In several studies, the background field method applied to the temperature field has been used to provide upper bounds on Nu in terms of Ra. In these applications, the background field method comes in the form of a variational problem where one optimizes a stratified temperature profile subject to a certain stability condition; the method is believed to capture the marginal stability of the boundary layer. The best available upper bound via this method is Nu R a 1 3 ( ln R a ) 1 15 ; it proceeds via the construction of a stable temperature background profile that increases logarithmically in the bulk. In this paper, we show that the background temperature field method cannot provide a tighter upper bound in terms of the power of the logarithm. However, by another method, one does obtain the tighter upper bound Nu Ra 1 3 ( ln ln Ra ) 1 3 so that the result of this paper implies that the background temperature field method is unphysical in the sense that it cannot provide the optimal bound.

1.
A. V.
Getling
, “
Rayleigh-Benard convection. Structure and dynamics
,” in
Advanced Series in Nonlinear Dynamics
(
World Scientific Publishing CO., Inc.
,
River Edge, NJ
,
1998
), Vol. 11, pp.
245
.
2.
W. V.
Malkus
, “
The heat transport and spectrum of thermal turbulence
,”
Proc. R. Soc. A
225
,
196
212
(
1954
).
3.
S.
Grossman
and
D.
Lohse
, “
Scaling in thermal convection: A unifying theory
,”
J. Fluid Mech.
407
,
27
56
(
2000
).
4.
L. N.
Howard
, “
Heat transport by turbulent convection
,”
J. Fluid Mech.
17
,
405
432
(
1963
).
5.
F. H.
Busse
, “
On Howard’s upper bound for heat transport by turbulent convection
,”
J. Fluid Mech.
37
,
457
477
(
1969
).
6.
S.-K.
Chan
, “
Infinite Prandtl number turbulent convection
,”
Stud. Appl. Math.
50
,
13
49
(
1971
).
7.
E.
Hopf
, “
Ein allgemeiner endlichkeitssatz der hydrodynamik
,”
Math. Ann.
117
,
764
775
(
1940
).
8.
R. R.
Kerswell
, “
Unification of variational principles for turbulent shear flows: The background method of Doering-Constantin and the mean-fluctuation formulation of Howard-Busse
,”
Phys. D
121
,
175
192
(
1998
).
9.
C. R.
Doering
and
P.
Constantin
, “
On upper bounds for infinite Prandtl number convection with or without rotation
,”
J. Math. Phys.
42
,
784
795
(
2001
).
10.
C. R.
Doering
,
F.
Otto
, and
M. G.
Reznikoff
, “
Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Bénard convection
,”
J. Fluid Mech.
560
,
229
242
(
2006
).
11.
F.
Otto
and
C.
Seis
, “
Rayleigh–Bénard convection: Improved bounds on the Nusselt number
,”
J. Math. Phys.
52
,
083702
(
2011
).
12.
J. P.
Whitehead
and
C. R.
Doering
, “
Ultimate state of two-dimensional Rayleigh-Bénard convection between free-slip fixed-temperature boundaries
,”
Phys. Rev. Lett.
106
,
244501
(
2011
).
13.
J.
Otero
,
R. W.
Wittenberg
,
R. A.
Worthing
, and
C. R.
Doering
, “
Bounds on Rayleigh–Bénard convection with an imposed heat flux
,”
J. Fluid Mech.
473
,
191
199
(
2002
).
14.
J. P.
Whitehead
and
C. R.
Doering
, “
Internal heating driven convection at infinite Prandtl number
,”
J. Math. Phys.
52
,
093101
(
2011
).
15.
J. P.
Whitehead
and
R. W.
Wittenberg
, “
A rigorous bound on the vertical transport of heat in Rayleigh-Bénard convection at infinite Prandtl number with mixed thermal boundary conditions
,”
J. Math. Phys.
55
,
093104
(
2014
).
16.
D.
Goluskin
and
C. R.
Doering
, “
Bounds for convection between rough boundaries
,”
J. Fluid Mech.
804
,
370
386
(
2016
).
17.
C. R.
Doering
and
P.
Constantin
, “
Energy dissipation in shear driven turbulence
,”
Phys. Rev. Lett.
69
,
1648
1651
(
1992
).
18.
B.
Nicolaenko
,
B.
Scheurer
, and
R.
Temam
, “
Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors
,”
Phys. D
16
,
155
183
(
1985
).
19.
P.
Constantin
and
C. R.
Doering
, “
Infinite Prandtl number convection
,”
J. Stat. Phys.
94
,
159
172
(
1999
).
20.
G. R.
Ierley
,
R. R.
Kerswell
, and
S. C.
Plasting
, “
Infinite-Prandtl-number convection. Part 2. A singular limit of upper bound theory
,”
J. Fluid Mech.
560
,
159
227
(
2006
).
21.
J. C.
Bronski
and
T. N.
Gambill
, “
Uncertainty estimates and L2 bounds for the Kuramoto–Sivashinsky equation
,”
Nonlinearity
19
,
2023
(
2006
).
22.
L.
Giacomelli
and
F.
Otto
, “
New bounds for the Kuramoto-Sivashinsky equation
,”
Commun. Pure Appl. Math.
58
,
297
318
(
2005
).
23.
F.
Otto
, “
Optimal bounds on the Kuramoto–Sivashinsky equation
,”
J. Funct. Anal.
257
,
2188
2245
(
2009
).
24.
M.
Goldman
,
M.
Josien
, and
F.
Otto
, “
New bounds for the inhomogenous Burgers and the Kuramoto-Sivashinsky equations
,”
Commun. Partial Differ. Equations
40
,
2237
2265
(
2015
).
25.
C. R.
Doering
and
P.
Constantin
, “
Variational bounds on energy dissipation in incompressible flows. III. Convection
,”
Phys. Rev. E
53
,
5957
(
1996
).
26.
N.
Camilla
, “
Rayleigh–Bénard convection: Bounds on the Nusselt number
,” Ph.D. thesis,
Universität Leipzig
,
2015
, p.
110
.
You do not currently have access to this content.