In this work, we extend the theory of quantum Markov processes on a single quantum state to a broader theory that covers Markovian evolution of an ensemble of quantum states, which generalizes Lindblad’s formulation of quantum dynamical semigroups. Our results establish the equivalence between an exponential decrease of the matrix Φ-entropies and the Φ-Sobolev inequalities, which allows us to characterize the dynamical evolution of a quantum ensemble to its equilibrium. In particular, we study the convergence rates of two special semigroups, namely, the depolarizing channel and the phase-damping channel. In the former, since there exists a unique equilibrium state, we show that the matrix Φ-entropy of the resulting quantum ensemble decays exponentially as time goes on. Consequently, we obtain a stronger notion of monotonicity of the Holevo quantity—the Holevo quantity of the quantum ensemble decays exponentially in time and the convergence rate is determined by the modified log-Sobolev inequalities. However, in the latter, the matrix Φ-entropy of the quantum ensemble that undergoes the phase-damping Markovian evolution generally will not decay exponentially. There is no classical analogy for these different equilibrium situations. Finally, we also study a statistical mixing of Markov semigroups on matrix-valued functions. We can explicitly calculate the convergence rate of a Markovian jump process defined on Boolean hypercubes and provide upper bounds to the mixing time.

1.
E. B.
Davies
, “
Quantum stochastic processes
,”
Commun. Math. Phys.
15
(
4
),
277
304
(
1969
).
2.
G.
Lindblad
, “
On the generators of quantum dynamical semigroups
,”
Commun. Math. Phys.
48
(
2
),
119
130
(
1976
).
3.
K.
Temme
,
M. J.
Kastoryano
,
M. B.
Ruskai
,
M. M.
Wolf
, and
F.
Verstraete
, “
The χ2-divergence and mixing times of quantum Markov processes
,”
J. Math. Phys.
51
(
12
),
122201
(
2010
).
4.
M. J.
Kastoryano
and
K.
Temme
, “
Quantum logarithmic Sobolev inequalities and rapid mixing
,”
J. Math. Phys.
54
(
5
),
052202
(
2013
).
5.
R.
Olkiewicz
and
B.
Zegarlinski
, “
Hypercontractivity in noncommutative Lp spaces
,”
J. Funct. Anal.
161
(
1
),
246
285
(
1999
).
6.
M. J.
Kastoryano
,
D.
Reeb
, and
M. M.
Wolf
, “
A cutoff phenomenon for quantum Markov chains
,”
J. Phys. A: Math. Theor.
45
(
7
),
075307
(
2012
).
7.
O.
Szehr
and
M. M.
Wolf
, “
Perturbation bounds for quantum Markov processes and their fixed points
,”
J. Math. Phys.
54
(
3
),
032203
(
2013
).
8.
O.
Szehr
,
D.
Reeb
, and
M. M.
Wolf
, “
Spectral convergence bounds for classical and quantum Markov processes
,”
Commun. Math. Phys.
333
(
2
),
565
595
(
2014
).
9.
K.
Temme
,
T. J.
Osborne
,
K. G.
Vollbrecht
,
D.
Poulin
, and
F.
Verstraete
, “
Quantum metropolis sampling
,”
Nature
471
(
7336
),
87
90
(
2011
).
10.
A. S.
Holevo
, “
The capacity of the quantum channel with general signal states
,”
IEEE Trans. Inf. Theory
44
(
1
),
269
273
(
1998
).
11.
R. Y.
Chen
and
J. A.
Tropp
, “
Subadditivity of matrix φ-entropy and concentration of random matrices
,”
Electron. J. Probab.
19
(
27
),
1
30
(
2014
).
12.
H.-C.
Cheng
and
M.-H.
Hsieh
, “
Characterizations of matrix and operator-valued Φ-entropies, and operator Efron-Stein inequalities
,”
Proc. R. Soc. A
472
(
2187
),
20150563
(
2016
).
13.
R.
Latała
and
K.
Oleszkiewicz
, “
Between Sobolev and Poincaré
,” in
Geometric Aspects of Functional Analysis
(
Springer
,
2000
), Vol. 1745, pp.
147
168
.
14.
D.
Chafaï
, “
Entropies, convexity, and functional inequalities: On Φ-entropies and Φ-sobolev inequalities
,”
J. Math. Kyoto Univ.
44
(
2
),
325
363
(
2004
).
15.
D.
Chafaï
, “
Binomial-Poisson entropic inequalities and the m/m/ queue
,”
ESAIM: Probab. Stat.
10
,
317
339
(
2006
).
16.
P.
Diaconis
and
L.
Saloff-Coste
, “
Logarithmic Sobolev inequalities for finite Markov chains
,”
Ann. Appl. Probab.
6
(
3
),
695
750
(
1996
).
17.
D.
Bakry
, “
L’hypercontractivité et son utilisation en théorie des semigroupes
,” in
Lectures on Probability Theory
(
Springer
,
Berlin
,
1994
), Vol. 1581, pp.
1
144
.
18.
A.
Guionnet
and
B.
Zegarlinski
, “
Lectures on logarithmic Sobolev inequalities
,” in
Séminaire de Probabilités XXXVI
(
Springer Berlin Heidelberg
,
2003
), Vol. 1801, pp.
1
134
.
19.
L.
Saloff-Coste
, “
Lectures on finite Markov chains
,” in
Lectures on Probability Theory and Statistics
(
Springer Berlin Heidelberg
,
1997
), Vol. 1665, pp.
301
413
.
20.
D.
Bakry
, “
Functional inequalities for Markov semigroups
,” in
Probability Measures on Groups
(
Tata Institute of Fundamental Research
,
Mumbai
,
2006
), pp.
91
147
.
21.
D.
Bakry
,
I.
Gentil
, and
M.
Ledoux
,
Analysis and Geometry of Markov Diffusion Operators
(
Springer International Publishing
,
2013
).
22.

Here we assume that there exists a unique invariant measure (see Sec. III for precise definitions) for the Markov semigroups, which ensures the existence of the average state. We discuss the conditions of uniqueness in Secs. V and VI.

23.
D.
Petz
, “
Monotonicity of quantum relative entropy revisited
,”
Rev. Math. Phys.
15
(
01
),
79
91
(
2003
).
24.
S.
Gudder
, “
Quantum Markov chains
,”
J. Math. Phys.
49
(
7
),
072105
(
2008
).
25.
S.
Attal
,
F.
Petruccione
,
C.
Sabot
, and
I.
Sinayskiy
, “
Open quantum random walks
,”
J. Stat. Phys.
147
(
4
),
832
852
(
2012
).
26.
S.
Attal
,
F.
Petruccione
, and
I.
Sinayskiy
, “
Open quantum walks on graphs
,”
Phys. Lett. A
376
(
18
),
1545
1548
(
2012
).
27.
E.
Hamza
and
A.
Joye
, “
Spectral transition for random quantum walks on trees
,”
Commun. Math. Phys.
326
(
2
),
415
439
(
2014
).
28.
Y.
Feng
,
N.
Yu
, and
M.
Ying
, “
Model checking quantum Markov chains
,”
J. Comput. Syst. Sci.
79
(
7
),
1181
1198
(
2013
).
29.
M.
Ying
,
N.
Yu
,
Y.
Feng
, and
R.
Duan
, “
Verification of quantum programs
,”
Sci. Comput. Program.
78
(
9
),
1679
1700
(
2013
).
30.
L.
Gross
, “
Logarithmic Sobolev inequalities
,”
Am. J. Math.
97
(
4
),
1061
(
1975
).
31.
T.
Bodineau
and
B.
Zegarlinski
, “
Hypercontractivity via spectral theory
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
03
(
01
),
15
31
(
2000
).
32.
R.
Carbone
, “
Optimal log-Sobolev inequality and hypercontractivity for positive semigroups on M2(C)
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
07
(
03
),
317
335
(
2004
).
33.
K.
Temme
,
F.
Pastawski
, and
M. J.
Kastoryano
, “
Hypercontractivity of quasi-free quantum semigroups
,”
J. Phys. A: Math. Theor.
47
(
40
),
405303
(
2014
).
34.
C.
King
, “
Hypercontractivity for semigroups of unital qubit channels
,”
Commun. Math. Phys.
328
(
1
),
285
301
(
2014
).
35.
T.
Cubitt
,
M. J.
Kastoryano
,
K.
Temme
, and
A.
Montanaro
, “
Quantum reverse hypercontractivity
,”
J. Math. Phys.
56
(
10
),
102204
(
2015
).
36.
A.
Müller-Hermes
,
D. S.
Franca
, and
M. M.
Wolf
, “
Entropy production of doubly stochastic quantum channels
,”
J. Math. Phys.
57
(
2
),
022203
(
2016
).
37.
S.
Beigi
and
C.
King
, “
Hypercontractivity and the logarithmic Sobolev inequality for the completely bounded norm
,”
J. Math. Phys.
57
(
1
),
015206
(
2016
).
38.
R.
Carbone
and
A.
Martinelli
, “
Logarithmic Sobolev inequalities in non-commutative algebras
,”
Infinite Dimens. Anal., Quantum Probab. Relat. Top.
18
(
02
),
1550011
(
2015
).
39.
F.
Hansen
and
G. K.
Pedersen
, “
Jensen’s operator inequality
,”
Bull. London Math. Soc.
35
(
4
),
553
564
(
2003
).
40.
D. R.
Farenick
and
F.
Zhou
, “
Jensen’s inequality relative to matrix-valued measures
,”
J. Math. Anal. Appl.
327
(
2
),
919
929
(
2007
).
41.
H.-C.
Cheng
and
M.-H.
Hsieh
, “
New characterizations of matrix Φ-entropies, Poincaré and Sobolev inequalities and an upper bound to Holevo quantity
,” e-print arXiv:1506.06801 [quant-ph] (
2015
).
42.
C. B.
Mendl
and
M. M.
Wolf
, “
Unital quantum channels–convex structure and revivals of Birkhoff’s theorem
,”
Commun. Math. Phys.
289
(
3
),
1057
1086
(
2009
).
43.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2009
).
44.
K.
Atkinson
and
W.
Han
,
Theoretical Numerical Analysis: A Functional Analysis Framework
(
Springer International Publishing
,
2009
).
45.
F.
Hansen
and
G. K.
Pedersen
, “
Perturbation formulas for traces on C*-algebras
,”
Publ. Res. Inst. Math. Sci.
31
(
1
),
169
178
(
1995
).
46.
J.
Diestel
and
J.
Uhl
,
Vector Measures
(
American Mathematical Society
,
1977
).
47.
J.
Mikusiński
,
The Bochner Integral
(
Springer
,
1978
).
48.
D.
Peŕez-Garciá
,
M. M.
Wolf
,
D.
Petz
, and
M. B.
Ruskai
, “
Contractivity of positive and trace-preserving maps under p norms
,”
J. Math. Phys.
47
(
8
),
083506
(
2006
).
49.
V.
Gorini
,
A.
Kossakowski
, and
E. C. G.
Sudarshan
, “
Completely positive dynamical semigroups of N-level systems
,”
J. Math. Phys.
17
(
5
),
821
825
(
1976
).
50.
G.
Androulakis
and
M.
Ziemke
, “
Generators of quantum Markov semigroups
,”
J. Math. Phys.
56
(
8
),
083512
(
2015
).
51.
R.
de Wolf
, “
A brief introduction to Fourier analysis on the Boolean cube
,” in
Theory of Computing Library
(
Graduate Surveys
,
2008
), Vol. 1, pp.
1
20
.
52.
S.
Fehr
and
C.
Schaffner
, “
Randomness extraction via δ-biased masking in the presence of a quantum attacker
,” in
Theory of Cryptography
(
Springer
,
2008
), pp.
465
481
.
53.
A.
Ben-Aroya
,
O.
Regev
, and
R.
de Wolf
, “
A hypercontractive inequality for matrix-valued functions with applications to quantum computing and LDCs
,” in
2008 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS)
(
Institute of Electrical & Electronics Engineers, IEEE
,
2008
).
54.

A Markov kernel matrix is called irreducible if there exists a finite t0 such that pt(x,y)>0 for all x and y. In other words, it is possible to get any state from any state. However, the uniqueness of the invariant measure gets more involved when the state space X is uncountable. We refer the interested readers to Ref. 60 [Chap. 7] for further discussions. We also remark that it is still unclear whether the classical characterizations of the unique invariant measures can be directly extended to the case of matrix-valued functions. This problem is left as future work.

55.
J. R.
Norris
,
Markov Chains
(
Cambridge University Press (CUP)
,
1997
).
56.
G. D.
Prato
,
An Introduction to Infinite-Dimensional Analysis
(
Springer
,
2006
).
57.
L.
Boltzmann
, “
Lectures on gas theory
,”
Phys. Today
17
(
3
),
76
(
1964
).
58.
H.-C.
Cheng
,
M.-H.
Hsieh
, and
P.-C.
Yeh
, “
The learnability of unknown quantum measurements
,”
Quantum Inf. Comput.
16
(
7–8
),
0615
0656
(
2016
), e-print arXiv:1501.00559.
59.
M.
Raginsky
, “
Strong data processing inequalities and Φ-Sobolev inequalities for discrete channels
,”
IEEE Trans. Inf. Theory
62
(
6
),
3355
3389
(
2016
).
60.
K.
Yosida
,
Functional Analysis
, 6th ed. (
Springer Berlin Heidelberg
,
1996
).
You do not currently have access to this content.