We introduce a framework for simulating quantum measurements based on classical processing of a set of accessible measurements. Well-known concepts such as joint measurability and projective simulability naturally emerge as particular cases of our framework, but our study also leads to novel results and questions. First, a generalisation of joint measurability is derived, which yields a hierarchy for the incompatibility of sets of measurements. A similar hierarchy is defined based on the number of outcomes necessary to perform a simulation of a given measurement. This general approach also allows us to identify connections between different kinds of simulability and, in particular, we characterise the qubit measurements that are projective-simulable in terms of joint measurability. Finally, we discuss how our framework can be interpreted in the context of resource theories.

1.
J. S.
Bell
, “
On the Einstein-Podolsky-Rosen paradox
,”
Physics
1
,
195
200
(
1964
).
2.
N.
Brunner
,
D.
Cavalcanti
,
S.
Pironio
,
V.
Scarani
, and
S.
Wehner
, “
Bell nonlocality
,”
Rev. Mod. Phys.
86
,
419
478
(
2014
); e-print arXiv:1303.2849.
3.
W.
Heisenberg
, “
Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik
,”
Z. Phys.
43
,
172
198
(
1927
).
4.
S.
Wehner
and
A.
Winter
, “
Entropic uncertainty relations—A survey
,”
New J. Phys.
12
,
025009
(
2010
); e-print arXiv:0907.3704.
5.
J. M.
Renes
,
R.
Blume-Kohout
,
A. J.
Scott
, and
C. M.
Caves
, “
Symmetric informationally complete quantum measurements
,”
J. Math. Phys.
45
,
2171
2180
(
2004
); e-print arXiv:quant-ph/0310075.
6.
W. K.
Wootters
and
B. D.
Fields
, “
Optimal state-determination by mutually unbiased measurements
,”
Ann. Phys.
191
,
363
381
(
1989
).
7.
J. A.
Bergou
, “
Discrimination of quantum states
,”
J. Mod. Opt.
57
,
160
180
(
2010
).
8.
P.
Kruszyski
and
W. M.
de Muynck
, “
Compatibility of observables represented by positive operator-valued measures
,”
J. Math. Phys.
28
,
1761
1763
(
1987
).
9.
T.
Heinosaari
,
D.
Reitzner
, and
P.
Stano
, “
Notes on joint measurability of quantum observables
,”
Found. Phys.
38
,
1133
1147
(
2008
); e-print arXiv:0811.0783.
10.
M. T.
Quintino
,
T.
Vértesi
, and
N.
Brunner
, “
Joint measurability, Einstein-Podolsky-Rosen steering, and Bell nonlocality
,”
Phys. Rev. Lett.
113
,
160402
(
2014
); e-print arXiv:1406.6976.
11.
R.
Uola
,
T.
Moroder
, and
O.
Gühne
, “
Joint measurability of generalized measurements implies classicality
,”
Phys. Rev. Lett.
113
,
160403
(
2014
); e-print arXiv:1407.2224.
12.
H. M.
Wiseman
,
S. J.
Jones
, and
A. C.
Doherty
, “
Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox
,”
Phys. Rev. Lett.
98
,
140402
(
2007
); e-print arXiv:quant-ph/0612147.
13.
C. H.
Bennett
, “
Quantum cryptography using any two nonorthogonal states
,”
Phys. Rev. Lett.
68
,
3121
3124
(
1992
).
14.
T.
Vértesi
and
E.
Bene
, “
Two-qubit Bell inequality for which positive operator-valued measurements are relevant
,”
Phys. Rev. A
82
,
062115
(
2010
); e-print arXiv:1007.2578.
15.
R.
Derka
,
V.
Bužek
, and
A. K.
Ekert
, “
Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement
,”
Phys. Rev. Lett.
80
,
1571
1575
(
1998
); e-print arXiv:quant-ph/9707028.
16.
A.
Acín
,
S.
Pironio
,
T.
Vértesi
, and
P.
Wittek
, “
Optimal randomness certification from one entangled bit
,”
Phys. Rev. A
93
,
040102
(
2016
); e-print arXiv:1505.03837.
17.
M. A.
Naimark
, “
Spectral functions of a symmetric operator
,”
Izv. Akad. Nauk SSSR Ser. Mat.
4
,
277
318
(
1940
).
18.
M.
Oszmaniec
,
L.
Guerini
,
P.
Wittek
, and
A.
Acín
, “
Simulating positive-operator-valued measures with projective measurements
,”
Phys. Rev. Lett.
(to be published); e-print arXiv:1609.06139 (
2016
).
19.
V.
Vedral
,
M. B.
Plenio
,
M. A.
Rippin
, and
P. L.
Knight
, “
Quantifying entanglement
,”
Phys. Rev. Lett.
78
,
2275
2279
(
1997
); e-print arXiv:quant-ph/9702027.
20.
M. B.
Plenio
and
S.
Virmani
, “
An introduction to entanglement measures
,”
Quantum Info. Comput.
7
,
1
51
(
2007
); e-print arXiv:quant-ph/0504163.
21.
F. G. S. L.
Brandão
,
M.
Horodecki
,
J.
Oppenheim
,
J. M.
Renes
, and
R. W.
Spekkens
, “
Resource theory of quantum states out of thermal equilibrium
,”
Phys. Rev. Lett.
111
,
250404
(
2013
); e-print arXiv:1111.3882.
22.
M.
Ahmadi
,
D.
Jennings
, and
T.
Rudolph
, “
The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry
,”
New J. Phys.
15
,
013057
(
2013
).
23.
G.
Gour
and
R. W.
Spekkens
, “
The resource theory of quantum reference frames: Manipulations and monotones
,”
New J. Phys.
10
,
033023
(
2008
); e-print arXiv:0711.0043.
24.
J. I.
de Vicente
, “
On nonlocality as a resource theory and nonlocality measures
,”
J. Phys. A: Math. Theor.
47
,
424017
(
2014
); e-print arXiv:1401.6941.
25.
E.
Haapasalo
,
T.
Heinosaari
, and
J.-P.
Pellonpää
, “
Quantum measurements on finite dimensional systems: Relabeling and mixing
,”
Quantum Inf. Process.
11
,
1751
1763
(
2012
); e-print arXiv:1104.4886.
26.
F.
Buscemi
,
M.
Keyl
,
G. M.
D’Ariano
,
P.
Perinotti
, and
R. F.
Werner
, “
Clean positive operator valued measures
,”
J. Math. Phys.
46
,
082109
(
2005
); e-print arXiv:quant-ph/0505095.
27.

The set B needs not to be countable, as it happens, e.g., for projective simulable measurements. However, given a measurement A and a set of simulators B, Caratheodory’s Theorem guarantees that a finite subset of B is enough. This justifies our use of sums instead of integrals.

28.
M.
Piani
and
J.
Watrous
, “
Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering
,”
Phys. Rev. Lett.
114
,
060404
(
2015
); e-print arXiv:1406.0530.
29.
S. T.
Ali
,
C.
Carmeli
,
T.
Heinosaari
, and
A.
Toigo
, “
Commutative POVMs and fuzzy observables
,”
Found. Phys.
39
,
593
612
(
2009
).
30.
M. M.
Wolf
,
D.
Perez-Garcia
, and
C.
Fernandez
, “
Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory
,”
Phys. Rev. Lett.
103
,
230402
(
2009
); e-print arXiv:0905.2998.
31.
D.
Cavalcanti
and
P.
Skrzypczyk
, “
Quantitative relations between measurement incompatibility, quantum steering, and nonlocality
,”
Phys. Rev. A
93
,
052112
(
2016
); e-print arXiv:1601.07450.
32.
T.
Heinosaari
,
J.
Kiukas
, and
D.
Reitzner
, “
Noise robustness of the incompatibility of quantum measurements
,”
Phys. Rev. A
92
,
022115
(
2015
); e-print arXiv:1501.04554.
33.
J.
Bavaresco
,
M. T.
Quintino
,
L.
Guerini
,
T. O.
Maciel
,
D.
Cavalcanti
, and
M. T.
Cunha
, “
Most incompatible measurements for robust steering tests
,”
Phys. Rev. A
96
,
022110
(
2017
); e-print arXiv:1704.02994.
34.
M.
Kleinmann
and
A.
Cabello
, “
Quantum correlations are stronger than all nonsignaling correlations produced by n-outcome measurements
,”
Phys. Rev. Lett.
117
,
150401
(
2016
); e-print arXiv:1505.04179.
35.
L.
Masanes
, “
Extremal quantum correlations for N parties with two dichotomic observables per site
,” e-print arXiv:quant-ph/0512100 (
2005
).
36.
F.
Hirsch
,
M. T.
Quintino
,
T.
Vértesi
,
M.
Navascués
, and
N.
Brunner
, “
Better local hidden variable models for two-qubit Werner states and an upper bound on the Grothendieck constant KG(3)
,”
Quantum
1
,
3
(
2017
); e-print arXiv:1609.06114.
37.
P.
Busch
, “
On the sharpness and bias of quantum effects
,”
Found. Phys.
39
,
712
730
(
2009
).
38.
R. A.
Bertlmann
and
P.
Krammer
, “
Bloch vectors for qudits
,”
J. Phys. A: Math. Theor.
41
,
235303
(
2008
); e-print arXiv:0806.1174.
39.
E. B.
Davies
,
Quantum Theory of Open Systems
(
Academic Press
,
London, New York
,
1976
).
40.
V.
Bužek
,
M.
Hillery
, and
R. F.
Werner
, “
Optimal manipulations with qubits: Universal-NOT gate
,”
Phys. Rev. A
60
,
R2626
R2629
(
1999
); e-print arXiv:quant-ph/9901053.
You do not currently have access to this content.