We work on a parallelizable time-orientable Lorentzian 4-manifold and prove that in this case, the notion of spin structure can be equivalently defined in a purely analytic fashion. Our analytic definition relies on the use of the concept of a non-degenerate two-by-two formally self-adjoint first order linear differential operator and gauge transformations of such operators. We also give an analytic definition of spin structure for the 3-dimensional Riemannian case.
REFERENCES
1.
Avetisyan
, Z.
, Fang
, Y.-L.
, and Vassiliev
, D.
, “Spectral asymptotics for first order systems
,” J. Spectral Theory
6
, 695
–715
(2016
).2.
Baum
, H.
, Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten
(Teubner-Texte zur Mathematik
, 1981
).3.
Baum
, H.
, “Spinor structures and Dirac operators on pseudo-Riemannian manifolds
,” Bull. Pol. Acad. Sci., Math.
32
, 165
–171
(1985
).4.
Bichteler
, K.
, “Global existence of spin structures for gravitational fields
,” J. Math. Phys.
9
, 813
–815
(1968
).5.
Chervova
, O.
, Downes
, R. J.
, and Vassiliev
, D.
, “Spectral theoretic characterization of the massless Dirac operator
,” J. London Math. Soc.
89
, 301
–320
(2014
).6.
Davis
, J.
and Kirk
, P.
, Lecture Notes in Algebraic Topology
(American Mathematical Society
, Providence
, RI, 2001
).7.
Dold
, A.
and Whitney
, H.
, “Classification of oriented sphere bundles over a 4-complex
,” Ann. Math.
69
, 667
–677
(1959
).8.
Downes
, R. J.
and Vassiliev
, D.
, “Spectral theoretic characterization of the massless Dirac action
,” Mathematika
62
, 701
–718
(2016
).9.
Fang
, Y.-L.
and Vassiliev
, D.
, “Analysis as a source of geometry: A non-geometric representation of the Dirac equation
,” J. Phys. A: Math. Theor.
48
, 165203
(2015
).10.
Friedrich
, T.
, Dirac Operators in Riemannian Geometry
, Volume 25 of Graduate Studies in Mathematics (American Mathematical Society
, Providence, RI, 2000
).11.
12.
Kaplan
, S.
, “Constructing framed 4-manifolds with given almost framed boundaries
,” Trans. Am. Math. Soc.
254
, 237
–263
(1979
).13.
Kirby
, R.
, The Topology of 4-Manifolds
, Volume 1374 of Lecture Notes in Mathematics (Springer
, 1989
).14.
Lawson
, Jr., H. B.
and Michelsohn
, M.-L.
, Spin Geometry
(Princeton University Press
, Princeton, New Jersey
, 1989
).15.
Milnor
, J.
, “Spin structures on manifolds
,” Enseign. Math.
9
, 198
–203
(1963
).16.
Safarov
, Yu.
and Vassiliev
, D.
, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators
(American Mathematical Society
, Providence, RI
, 1997
).17.
Stiefel
, E.
, “Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten
,” Comment. Math. Helvetici
8
, 305
–353
(1935
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.