We work on a parallelizable time-orientable Lorentzian 4-manifold and prove that in this case, the notion of spin structure can be equivalently defined in a purely analytic fashion. Our analytic definition relies on the use of the concept of a non-degenerate two-by-two formally self-adjoint first order linear differential operator and gauge transformations of such operators. We also give an analytic definition of spin structure for the 3-dimensional Riemannian case.

1.
Avetisyan
,
Z.
,
Fang
,
Y.-L.
, and
Vassiliev
,
D.
, “
Spectral asymptotics for first order systems
,”
J. Spectral Theory
6
,
695
715
(
2016
).
2.
Baum
,
H.
,
Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten
(
Teubner-Texte zur Mathematik
,
1981
).
3.
Baum
,
H.
, “
Spinor structures and Dirac operators on pseudo-Riemannian manifolds
,”
Bull. Pol. Acad. Sci., Math.
32
,
165
171
(
1985
).
4.
Bichteler
,
K.
, “
Global existence of spin structures for gravitational fields
,”
J. Math. Phys.
9
,
813
815
(
1968
).
5.
Chervova
,
O.
,
Downes
,
R. J.
, and
Vassiliev
,
D.
, “
Spectral theoretic characterization of the massless Dirac operator
,”
J. London Math. Soc.
89
,
301
320
(
2014
).
6.
Davis
,
J.
and
Kirk
,
P.
,
Lecture Notes in Algebraic Topology
(
American Mathematical Society
,
Providence
, RI,
2001
).
7.
Dold
,
A.
and
Whitney
,
H.
, “
Classification of oriented sphere bundles over a 4-complex
,”
Ann. Math.
69
,
667
677
(
1959
).
8.
Downes
,
R. J.
and
Vassiliev
,
D.
, “
Spectral theoretic characterization of the massless Dirac action
,”
Mathematika
62
,
701
718
(
2016
).
9.
Fang
,
Y.-L.
and
Vassiliev
,
D.
, “
Analysis as a source of geometry: A non-geometric representation of the Dirac equation
,”
J. Phys. A: Math. Theor.
48
,
165203
(
2015
).
10.
Friedrich
,
T.
,
Dirac Operators in Riemannian Geometry
, Volume 25 of Graduate Studies in Mathematics (
American Mathematical Society
, Providence, RI,
2000
).
11.
Hatcher
,
A.
,
Algebraic Topology
(
Cambridge University Press
,
Cambridge
,
2002
).
12.
Kaplan
,
S.
, “
Constructing framed 4-manifolds with given almost framed boundaries
,”
Trans. Am. Math. Soc.
254
,
237
263
(
1979
).
13.
Kirby
,
R.
,
The Topology of 4-Manifolds
, Volume 1374 of Lecture Notes in Mathematics (
Springer
,
1989
).
14.
Lawson
, Jr.,
H. B.
and
Michelsohn
,
M.-L.
,
Spin Geometry
(
Princeton University Press
,
Princeton, New Jersey
,
1989
).
15.
Milnor
,
J.
, “
Spin structures on manifolds
,”
Enseign. Math.
9
,
198
203
(
1963
).
16.
Safarov
,
Yu.
and
Vassiliev
,
D.
,
The Asymptotic Distribution of Eigenvalues of Partial Differential Operators
(
American Mathematical Society
,
Providence, RI
,
1997
).
17.
Stiefel
,
E.
, “
Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten
,”
Comment. Math. Helvetici
8
,
305
353
(
1935
).
You do not currently have access to this content.