The complete group classification problem for the class of (1+1)-dimensional rth order general variable-coefficient Burgers–Korteweg–de Vries equations is solved for arbitrary values of r greater than or equal to two. We find the equivalence groupoids of this class and its various subclasses obtained by gauging equation coefficients with equivalence transformations. Showing that this class and certain gauged subclasses are normalized in the usual sense, we reduce the complete group classification problem for the entire class to that for the selected maximally gauged subclass, and it is the latter problem that is solved efficiently using the algebraic method of group classification. Similar studies are carried out for the two subclasses of equations with coefficients depending at most on the time or space variable, respectively. Applying an original technique, we classify Lie reductions of equations from the class under consideration with respect to its equivalence group. Studying alternative gauges for equation coefficients with equivalence transformations allows us not only to justify the choice of the most appropriate gauge for the group classification but also to construct for the first time classes of differential equations with nontrivial generalized equivalence group such that equivalence-transformation components corresponding to equation variables locally depend on nonconstant arbitrary elements of the class. For the subclass of equations with coefficients depending at most on the time variable, which is normalized in the extended generalized sense, we explicitly construct its extended generalized equivalence group in a rigorous way. The new notion of effective generalized equivalence group is introduced.

1.
Basarab-Horwath
,
P.
,
Lahno
,
V.
, and
Zhdanov
,
R.
, “
The structure of Lie algebras and the classification problem for partial differential equations
,”
Acta Appl. Math.
69
,
43
94
(
2001
); e-print arXiv:math-ph/0005013.
2.
Bihlo
,
A.
,
Dos Santos Cardoso-Bihlo
,
E.
, and
Popovych
,
R. O.
, “
Complete group classification of a class of nonlinear wave equations
,”
J. Math. Phys.
53
,
123515
(
2012
); e-print arXiv:1106.4801.
3.
Bihlo
,
A.
and
Popovych
,
R. O.
, “
Group classification of linear evolution equations
,”
J. Math. Anal. Appl.
448
,
982
1005
(
2017
); e-print arXiv:1605.09251.
4.
Boyko
,
V. M.
,
Popovych
,
R. O.
, and
Shapoval
,
N. M.
, “
Equivalence groupoids of classes of linear ordinary differential equations and their group classification
,”
J. Phys.: Conf. Ser.
621
,
012002
(
2015
); e-print arXiv:1403.6062 (extended version).
5.
Boyko
,
V. M.
and
Popovych
,
V. O.
, “
Group classification of higher-order Galilei-invariant equations
,” in
Group and Analytic Methods in Mathematical Physics
, Proceedings of Institute of Mathematics (
Institute of Mathematics
,
Kyiv
,
2001
), Vol. 36, pp.
45
50
(in Ukrainian).
6.
Dos Santos Cardoso-Bihlo
,
E.
,
Bihlo
,
A.
, and
Popovych
,
R. O.
, “
Enhanced preliminary group classification of a class of generalized diffusion equations
,”
Commun. Nonlinear Sci. Numer. Simul.
16
,
3622
3638
(
2011
); e-print arXiv:1012.0297.
7.
Doyle
,
J.
and
Englefield
,
M. J.
, “
Similarity solutions of a generalized Burgers equation
,”
IMA J. Appl. Math.
44
,
145
153
(
1990
).
8.
Fushchych
,
W. I.
and
Boyko
,
V. M.
, “
Higher-order Galilei-invariant equations of Burgers and Korteweg–de Vries type
,”
Ukrain. Mat. Zh.
48
,
1589
1601
(
1996
)
(in Ukrainian)
Fushchych
,
W. I.
and
Boyko
,
V. M.
, “
Higher-order Galilei-invariant equations of Burgers and Korteweg–de Vries type
,” [
Ukrainian Math. J.
48
,
1799
1814
(
1996
)].
9.
Gagnon
,
L.
and
Winternitz
,
P.
, “
Symmetry classes of variable coefficient nonlinear Schrödinger equations
,”
J. Phys. A
26
,
7061
7076
(
1993
).
10.
Gazeau
,
J. P.
and
Winternitz
,
P.
, “
Symmetries of variable coefficient Korteweg–de Vries equations
,”
J. Math. Phys.
33
,
4087
4102
(
1992
).
11.
Güngör
,
F.
,
Lahno
,
V. I.
, and
Zhdanov
,
R. Z.
, “
Symmetry classification of KdV-type nonlinear evolution equations
,”
J. Math. Phys.
45
,
2280
2313
(
2004
); e-print arXiv:nlin/0201063.
12.
Huang
,
Q.
,
Lahno
,
V.
,
Qu
,
C. Z.
, and
Zhdanov
,
R.
, “
Preliminary group classification of a class of fourth-order evolution equations
,”
J. Math. Phys.
50
,
023503
(
2009
).
13.
Huang
,
Q.
,
Qu
,
C.
, and
Zhdanov
,
R.
, “
Group classification of linear fourth-order evolution equations
,”
Rep. Math. Phys.
70
,
331
343
(
2012
).
14.
Kingston
,
J. G.
and
Sophocleous
,
C.
, “
On point transformations of a generalised Burgers equation
,”
Phys. Lett. A
155
,
15
19
(
1991
).
15.
Kingston
,
J. G.
and
Sophocleous
,
C.
, “
On form-preserving point transformations of partial differential equations
,”
J. Phys. A
31
,
1597
1619
(
1998
).
16.
Kunzinger
,
M.
and
Popovych
,
R. O.
, “
Generalized conditional symmetries of evolution equations
,”
J. Math. Anal. Appl.
379
,
444
460
(
2011
); e-print arXiv:1011.0277.
17.
Kuriksha
,
O.
,
Pošta
,
S.
, and
Vaneeva
,
O.
, “
Group analysis of generalized fifth-order Korteweg–de Vries equations with time-dependent coefficients
,” in
Lie Theory and its Applications in Physics
, Vol. 111 of Springer Proceedings in Mathematics and Statistics (
Springer
,
Tokyo
,
2014
), pp.
451
459
; e-print arXiv:1402.0347.
18.
Kuriksha
,
O.
,
Pošta
,
S.
, and
Vaneeva
,
O.
, “
Group classification of variable coefficient generalized Kawahara equations
,”
J. Phys. A
47
,
045201
(
2014
); e-print arXiv:1309.7161.
19.
Kurujyibwami
,
C.
,
Basarab-Horwath
,
P.
, and
Popovych
,
R. O.
, “
Algebraic method for group classification of (1+1)-dimensional linear Schrödinger equations
,” e-print arXiv:1607.04118.
20.
Kurujyibwami
,
C.
,
Basarab-Horwath
,
P.
, and
Popovych
,
R. O.
, “
Group classification of multidimensional linear Schrödinger equations with algebraic method
” (unpublished).
21.
Lie
,
S.
, “
Über die Integration durch bestimmte integrale von einer Klasse linearer partieller differentialgleichungen
,”
Arch. Math.
6
,
328
368
(
1881
);
N. H.
Ibragimov
and
S.
Lie
, “
On integration of a class of linear partial differential equations by means of definite integrals
,” in
CRC Handbook of Lie Group Analysis of Differential Equations
(
CRC Press
,
Boca Raton
,
1994
), Vol. 2, pp.
473
508
.
22.
Lisle
,
I. G.
, “
Equivalence transformations for classes of differential equations
,” Ph.D. thesis,
University of British Columbia
,
1992
.
23.
Long
,
F. S.
,
Karnbanjong
,
A.
,
Suriyawichitseranee
,
A.
,
Grigoriev
,
Y. N.
, and
Meleshko
,
S. V.
, “
Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation
,”
Commun. Nonlinear Sci. Numer. Simul.
48
,
350
360
(
2017
).
24.
Magadeev
,
B. A.
, “
Group classification of nonlinear evolution equations
,”
Algebra i Anal.
5
,
141
156
(
1993
)
(in Russian)
Magadeev
,
B. A.
, “
Group classification of nonlinear evolution equations
,” [
St. Petersburg Math. J.
5
,
345
359
(
1994
)].
25.
Meleshko
,
S. V.
, “
Group classification of equations of two-dimensional gas motions
,”
Prikl. Mat. Mekh.
58
,
56
62
(
1994
)
(in Russian)
Meleshko
,
S. V.
, “
Group classification of equations of two-dimensional gas motions
,” [
J. Appl. Math. Mech.
58
,
629
635
(
1994
)].
26.
Meleshko
,
S. V.
, “
Generalization of the equivalence transformations
,”
J. Nonlinear. Math. Phys.
3
,
170
174
(
1996
).
27.
Mkhize
,
T. G.
,
Moyo
,
S.
, and
Meleshko
,
S. V.
, “
Complete group classification of systems of two linear second-order ordinary differential equations: The algebraic approach
,”
Math. Methods Appl. Sci.
38
,
1824
1837
(
2015
).
28.
Nikitin
,
A. G.
and
Popovych
,
R. O.
, “
Group classification of nonlinear Schrödinger equations
,”
Ukrainian Math. J.
53
,
1255
1265
(
2001
); e-print arXiv:math-ph/0301009.
29.
Olver
,
P. J.
,
Application of Lie Groups to Differential Equations
(
Springer
,
New York
,
2000
).
30.
Ovsiannikov
,
L. V.
,
Group Analysis of Differential Equations
(
Academic Press
,
New York
,
1982
).
31.
Pocheketa
,
O. A.
and
Popovych
,
R. O.
, “
Reduction operators and exact solutions of generalized Burgers equations
,”
Phys. Lett. A
376
,
2847
2850
(
2012
); e-print arXiv:1112.6394.
32.
Pocheketa
,
O. A.
and
Popovych
,
R. O.
, “
Extended symmetry analysis of generalized Burgers equations
,” e-print arXiv:1603.09377.
33.
Pocheketa
,
O. A.
,
Popovych
,
R. O.
and
Vaneeva
,
O. O.
, “
Group classification and exact solutions of variable-coefficient generalized Burgers equations with linear damping
,”
Appl. Math. Comput.
243
,
232
244
(
2014
); e-print arXiv:1308.4265.
34.
Popovych
,
R. O.
, “
Classification of admissible transformations of differential equations
,” in
Collection of Works of Institute of Mathematics
(
Institute of Mathematics
,
Kyiv
,
2006
), Vol. 3, pp.
239
254
.
35.
Popovych
,
R. O.
and
Bihlo
,
A.
, “
Symmetry preserving parameterization schemes
,”
J. Math. Phys.
53
,
073102
(
2012
); e-print arXiv:1010.3010.
36.
Popovych
,
R. O.
,
Kunzinger
,
M.
, and
Eshraghi
,
H.
, “
Admissible transformations and normalized classes of nonlinear Schrödinger equations
,”
Acta Appl. Math.
109
,
315
359
(
2010
); e-print arXiv:math-ph/0611061.
37.
Popovych
,
R. O.
and
Vaneeva
,
O. O.
, “
More common errors in finding exact solutions of nonlinear differential equations: Part I
,”
Commun. Nonlinear Sci. Numer. Simul.
15
,
3887
3899
(
2010
); e-print arXiv:0911.1848.
38.
Qu
,
C.
, “
Allowed transformations and symmetry classes of variable coefficient Burgers equations
,”
IMA J. Appl. Math.
54
,
203
225
(
1995
).
39.
Vaneeva
,
O.
, “
Group classification of variable coefficient KdV-like equations
,” in
Lie Theory and its Applications in Physics
, Vol. 36 of Springer Proceedings of Mathematics and Statistics (
Springer
,
Tokyo
,
2013
), pp.
451
459
; e-print arXiv:1204.4875.
40.
Vaneeva
,
O. O.
,
Johnpillai
,
A. G.
,
Popovych
,
R. O.
, and
Sophocleous
,
C.
, “
Enhanced group analysis and conservation laws of variable coefficient reaction–diffusion equations with power nonlinearities
,”
J. Math. Anal. Appl.
330
,
1363
1386
(
2007
); e-print arXiv:math-ph/0605081.
41.
Vaneeva
,
O. O.
,
Sophocleous
,
C.
, and
Leach
,
P. G. L.
, “
Lie symmetries of generalized Burgers equations: application to boundary-value problems
,”
J. Eng. Math.
91
,
165
176
(
2015
); e-print arXiv:1303.3548.
42.
Vaneeva
,
O. O.
,
Popovych
,
R. O.
, and
Sophocleous
,
C.
, “
Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source
,”
Acta Appl. Math.
106
,
1
46
(
2009
); e-print arXiv:0708.3457.
43.
Vaneeva
,
O. O.
,
Popovych
,
R. O.
, and
Sophocleous
,
C.
, “
Extended group analysis of variable coefficient reaction–diffusion equations with exponential nonlinearities
,”
J. Math. Anal. Appl.
396
,
225
242
(
2012
); e-print arXiv:1111.5198.
44.
Vaneeva
,
O. O.
,
Popovych
,
R. O.
, and
Sophocleous
,
C.
, “
Equivalence transformations in the study of integrability
,”
Phys. Scr.
89
,
038003
(
2014
); e-print arXiv:1308.5126.
45.
Vaneeva
,
O.
and
Pošta
,
S.
, “
Equivalence groupoid of a class of variable coefficient Korteweg–de Vries equations
,” e-print arXiv:1604.06880.
46.
Wafo Soh
,
C.
, “
Symmetry reductions and new exact invariant solutions of the generalized Burgers equation arising in nonlinear acoustics
,”
Int. J. Eng. Sci.
42
,
1169
1191
(
2004
).
47.
Winternitz
,
P.
and
Gazeau
,
J. P.
, “
Allowed transformations and symmetry classes of variable coefficient Korteweg–de Vries equations
,”
Phys. Lett. A
167
,
246
250
(
1992
).
48.
Zhdanov
,
R. Z.
, “
Conditional Lie–Bäcklund symmetry and reduction of evolution equations
,”
J. Phys. A
28
,
3841
3850
(
1995
).
49.
Zhdanov
,
R. Z.
and
Lahno
,
V. I.
, “
Group classification of heat conductivity equations with a nonlinear source
,”
J. Phys. A
32
,
7405
7418
(
1999
); e-print arXiv:math-ph/9906003.
You do not currently have access to this content.