In this paper, we establish some results concerning the existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation. Variational methods are used to get an existence result, as well as, to study the concentration phenomenon, while the regularity is more delicate because we are leading with functions in an anisotropic Sobolev space.

1.
Alves
,
C. O.
,
do Ó
,
J. M. B.
, and
Souto
,
M. A. S.
, “
Local mountain-pass for a class of elliptic problems involving critical growth
,”
Nonlinear Anal.: Theory, Methods Appl.
46
,
495
510
(
2001
).
2.
Alves
,
C. O.
and
Miyagaki
,
O. H.
, “
Existence and concentration of solution for a class of fractional elliptic equation in RN via penalization method
,”
Calculus Var. Partial Differ. Equations
55
,
47
(
2016
).
3.
Alves
,
C. O.
and
Souto
,
M. A. S.
, “
On existence and concentration behavior of ground state solutions for a class of problems with critical growth
,”
Commun. Pure Appl. Anal.
1
(
3
),
417
431
(
2002
).
4.
Alves
,
C. O.
and
Figueiredo
,
G. M.
, “
Existence and multiplicity of positive solutions to a p-Laplacian equation in RN
,”
Differ. Integr. Equations
19
(
2
),
143
162
(
2006
).
5.
Ambrosetti
,
A.
and
Rabinowitz
,
P. H.
, “
Dual variational methods in critical point theory and applications
,”
J. Funct. Anal.
14
,
349
381
(
1973
).
6.
Bartsch
,
T.
,
Pankov
,
A.
, and
Wang
,
Z.-Q.
, “
Nonlinear Schrödinger equations with steep potential well
,”
Commun. Contemp. Math.
3
,
549
569
(
2001
).
7.
Bartsch
,
T.
and
Wang
,
Z.-Q.
, “
Existence and multiplicity results for some superlinear elliptic problems on RN
,”
Commun. Partial Differ. Equations
20
,
1725
1741
(
1995
).
8.
Besov
,
O. V.
,
Il’in
,
V. P.
, and
Nikolski
,
S. M.
,
Integral Representations of Functions and Imbedding Theorems, Volume I
(
Wiley
,
New York
,
1978
).
9.
Bourgain
,
J.
, “
On the Cauchy problem for the Kadomtesv-Petviashvili equation
,”
Geom. Funct. Anal.
3
,
315
341
(
1993
).
10.
Coti-Zelati
,
V.
and
Rabinowitz
,
P. H.
, “
Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials
,”
J. Am. Math. Soc.
4
,
693
727
(
1991
).
11.
David
,
D.
,
Levi
,
D.
, and
Winternitz
,
P.
, “
Integrable nonlinear equations for water waves in straits of varying depth and width
,”
Stud. Appl. Math.
76
,
133
168
(
1987
).
12.
David
,
D.
,
Levi
,
D.
, and
Winternitz
,
P.
, “
Solitons in shallow seas of variable depth and in marine straits
,”
Stud. Appl. Math.
80
,
1
23
(
1989
).
13.
De Bouard
,
A.
and
Saut
,
J. C.
, “
Sur les ondes solitaires des equations de Kadomtsev-Petviashvili
,”
C. R. Acad. Sci. Paris
320
,
1315
1328
(
1995
).
14.
De Bouard
,
A.
and
Saut
,
J. C.
, “
Solitary waves of generalized Kadomtsev- Petviashvili equations
,”
Ann. Inst. Henri Poincare, Sect. C Nonlinear Anal.
14
,
211
236
(
1997
).
15.
del Pino
,
M.
and
Felmer
,
P. L.
, “
Local mountain pass for semilinear elliptic problems in unbounded domains
,”
Calculus Var. Partial Differ. Equations
4
,
121
137
(
1996
).
16.
do Ó
,
J. M. B.
and
Souto
,
M. A. S.
, “
On a class of nonlinear Schrödinger equations in R2 involving critical growth
,”
J. Differ. Equations
174
,
289
311
(
2001
).
17.
Faminskii
,
A. V.
, “
The Cauchy problem for Kadomtsev-Petviashvili equation
,”
Russ. Math. Surv.
45
,
203
204
(
1990
);
Faminskii
,
A. V.
,
Sib. J. Math.
33
,
133
143
(
1992
).
18.
Floer
,
A.
and
Weinstein
,
A.
, “
Nonspreading wave packets for the cubic Schrödinger equations with bounded potential
,”
J. Funct. Anal.
69
,
397
408
(
1986
).
19.
Folland
,
G. B.
,
Fourier Analysis and its Applications
(
Brooks/Cole
,
New York
,
1992
).
20.
Güngör
,
F.
and
Winternitz
,
P.
, “
Generalized Kadomtsev–Petviashvili equation with an infinite-dimensional symmetry algebra
,”
J. Math. Anal. Appl.
276
,
314
328
(
2002
).
21.
He
,
X.-M.
and
Zou
,
W.-M.
, “
Nontrivial solitary waves to the generalized Kadomtsev–Petviashvili equations
,”
Appl. Math. Comput.
197
,
858
863
(
2008
).
22.
Isaza
,
P.
and
Mejia
,
J.
, “
Local and global Cauchy problem for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices
,”
Commun. Partial Differ. Equations
26
,
1027
1054
(
2001
).
23.
Kadomtsev
,
B. B.
and
Petviashvili
,
V. I.
, “
On the stability of solitary waves in weakly dispersing media
,”
Sov. Phys. Dokl.
15
(
6
),
539
541
(
1970
).
24.
Kavian
,
O.
,
Introduction á la Théorie des Points Critiques et Applications aux Problémes Elliptíques
(
Springer-Verlag
,
Heidelberg
,
1993
).
25.
Liang
,
Z. P.
and
Su
,
J. B.
, “
Existence of solitary waves to a generalized Kadomtsev-Petviashvili equation
,”
Acta Math. Sci.
32
,
1149
1156
(
2012
).
26.
Lions
,
P. L.
, “
The concentration compactness principle in the calculus of variations. The locally compact case, part 1
,”
Ann. Inst. Henri Poincare, Sect. C Nonlinear Anal.
1
(
2
)
109
145
(
1984
);
Lions
,
P. L.
, “
The concentration compactness principle in the calculus of variations. The locally compact case, part 2
,”
Ann. Inst. Henri Poincare, Sect. C Nonlinear Anal.
1
(
4
),
223
283
(
1984
).
27.
Lizorkin
,
P. I.
, “
Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms. Applications
,”
Izv. Akad. Nauk SSSR Ser. Mat.
34
(
1
),
218
247
(
1970
);
Lizorkin
,
P. I.
, “
Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms. Applications
,”
Math. USSR Izv.
4
(
1
),
225
255
(
1970
).
28.
Mawhin
,
J.
and
Willem
,
M.
,
Critical Point Theory and Hamiltonian Systems
(
Springer-Verlag
,
New York
,
1989
).
29.
Oh
,
Y. J.
, “
Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials on the class (V)a
,”
Commun. Partial Differ. Equations
13
,
1499
1519
(
1988
).
30.
Pouget
,
J.
, “
Stability of nonlinear structures in a lattice model for phase transformations in alloys
,”
Phys. Rev. B
46
,
10554
10562
(
1992
).
31.
Rabinowitz
,
P. H.
, “
On a class of nonlinear Schrödinger equations
,”
Z. Angew. Math. Phys.
43
,
270
291
(
1992
).
32.
Saut
,
J. C.
, “
Recent results on the generalized Kadomtsev-Petviashvili equations
,”
Acta Appl. Math.
39
,
477
1487
(
1995
).
33.
Szulkin
,
A.
and
Zou
,
W.-M.
, “
Homoclinic orbit for asymptotically linear Hamiltonian systems
,”
J. Funct. Anal.
187
,
25
41
(
2001
).
34.
Tian
,
B.
and
Gao
,
Y.-T.
, “
Solutions of a variable-coefficient Kadomtsev-Petviashvili equation via computer algebra
,”
Appl. Math. Comput.
84
,
125
130
(
1997
).
35.
Xua
,
J.
,
Wei
,
Z.
, and
Ding
,
Y.
, “
Stationary solutions for a generalized Kadomtsev-Petviashvili equation in bounded domain
,”
Electron. J. Qual. Theory Differ. Equations
68
,
1
18
(
2012
).
36.
Xuan
,
B.
, “
Nontrivial solitary waves of GKP equation in multi-dimensional spaces
,”
Rev. Colomb. Math.
37
,
11
23
(
2003
).
37.
Wang
,
X.
, “
On concentration of positive bound states of nonlinear Schrödinger equations
,”
Commun. Math. Phys.
153
,
229
244
(
1993
).
38.
Wang
,
X. P.
,
Ablowitz
,
M. J.
, and
Segur
,
H.
, “
Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation
,”
Phys. D
78
,
241
265
(
1994
).
39.
Wang
,
Z. Q.
and
Willem
,
M.
, “
A multiplicity result for the generalized Kadomtsev-Petviashvili equation
,”
Topol. Methods Nonlinear Anal.
7
(
2
),
261
270
(
1996
).
40.
Willem
,
M.
,
Minimax Theorems
, (
Birkhäuser
,
Boston, Basel, Berlin
,
1996
).
41.
Zhang
,
Y.
,
Xu
,
Y.
, and
Ma
,
K.
, “
New type of a generalized variable-coefficient Kadomtsev-Petviashvili equation with self-consistent sources and its Grammian-type solutions
,”
Commun. Nonlinear Sci. Numer. Simul.
37
,
77
89
(
2016
).
42.
Zou
,
W.-M.
, “
Solitary waves of the generalized Kadomtsev-Petviashvili equations
,”
Appl. Math. Lett.
15
,
35
39
(
2002
).
You do not currently have access to this content.