In this paper, we establish some results concerning the existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation. Variational methods are used to get an existence result, as well as, to study the concentration phenomenon, while the regularity is more delicate because we are leading with functions in an anisotropic Sobolev space.
REFERENCES
1.
Alves
, C. O.
, do Ó
, J. M. B.
, and Souto
, M. A. S.
, “Local mountain-pass for a class of elliptic problems involving critical growth
,” Nonlinear Anal.: Theory, Methods Appl.
46
, 495
–510
(2001
).2.
Alves
, C. O.
and Miyagaki
, O. H.
, “Existence and concentration of solution for a class of fractional elliptic equation in via penalization method
,” Calculus Var. Partial Differ. Equations
55
, 47
(2016
).3.
Alves
, C. O.
and Souto
, M. A. S.
, “On existence and concentration behavior of ground state solutions for a class of problems with critical growth
,” Commun. Pure Appl. Anal.
1
(3
), 417
–431
(2002
).4.
Alves
, C. O.
and Figueiredo
, G. M.
, “Existence and multiplicity of positive solutions to a p-Laplacian equation in
,” Differ. Integr. Equations
19
(2
), 143
–162
(2006
).5.
Ambrosetti
, A.
and Rabinowitz
, P. H.
, “Dual variational methods in critical point theory and applications
,” J. Funct. Anal.
14
, 349
–381
(1973
).6.
Bartsch
, T.
, Pankov
, A.
, and Wang
, Z.-Q.
, “Nonlinear Schrödinger equations with steep potential well
,” Commun. Contemp. Math.
3
, 549
–569
(2001
).7.
Bartsch
, T.
and Wang
, Z.-Q.
, “Existence and multiplicity results for some superlinear elliptic problems on
,” Commun. Partial Differ. Equations
20
, 1725
–1741
(1995
).8.
Besov
, O. V.
, Il’in
, V. P.
, and Nikolski
, S. M.
, Integral Representations of Functions and Imbedding Theorems, Volume I
(Wiley
, New York
, 1978
).9.
Bourgain
, J.
, “On the Cauchy problem for the Kadomtesv-Petviashvili equation
,” Geom. Funct. Anal.
3
, 315
–341
(1993
).10.
Coti-Zelati
, V.
and Rabinowitz
, P. H.
, “Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials
,” J. Am. Math. Soc.
4
, 693
–727
(1991
).11.
David
, D.
, Levi
, D.
, and Winternitz
, P.
, “Integrable nonlinear equations for water waves in straits of varying depth and width
,” Stud. Appl. Math.
76
, 133
–168
(1987
).12.
David
, D.
, Levi
, D.
, and Winternitz
, P.
, “Solitons in shallow seas of variable depth and in marine straits
,” Stud. Appl. Math.
80
, 1
–23
(1989
).13.
De Bouard
, A.
and Saut
, J. C.
, “Sur les ondes solitaires des equations de Kadomtsev-Petviashvili
,” C. R. Acad. Sci. Paris
320
, 1315
–1328
(1995
).14.
De Bouard
, A.
and Saut
, J. C.
, “Solitary waves of generalized Kadomtsev- Petviashvili equations
,” Ann. Inst. Henri Poincare, Sect. C Nonlinear Anal.
14
, 211
–236
(1997
).15.
del Pino
, M.
and Felmer
, P. L.
, “Local mountain pass for semilinear elliptic problems in unbounded domains
,” Calculus Var. Partial Differ. Equations
4
, 121
–137
(1996
).16.
do Ó
, J. M. B.
and Souto
, M. A. S.
, “On a class of nonlinear Schrödinger equations in involving critical growth
,” J. Differ. Equations
174
, 289
–311
(2001
).17.
Faminskii
,A. V.
, “The Cauchy problem for Kadomtsev-Petviashvili equation
,” Russ. Math. Surv.
45
, 203
–204
(1990
);Faminskii
, A. V.
, Sib. J. Math.
33
, 133
–143
(1992
).18.
Floer
, A.
and Weinstein
, A.
, “Nonspreading wave packets for the cubic Schrödinger equations with bounded potential
,” J. Funct. Anal.
69
, 397
–408
(1986
).19.
20.
Güngör
, F.
and Winternitz
, P.
, “Generalized Kadomtsev–Petviashvili equation with an infinite-dimensional symmetry algebra
,” J. Math. Anal. Appl.
276
, 314
–328
(2002
).21.
He
, X.-M.
and Zou
, W.-M.
, “Nontrivial solitary waves to the generalized Kadomtsev–Petviashvili equations
,” Appl. Math. Comput.
197
, 858
–863
(2008
).22.
Isaza
, P.
and Mejia
, J.
, “Local and global Cauchy problem for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices
,” Commun. Partial Differ. Equations
26
, 1027
–1054
(2001
).23.
Kadomtsev
, B. B.
and Petviashvili
, V. I.
, “On the stability of solitary waves in weakly dispersing media
,” Sov. Phys. Dokl.
15
(6
), 539
–541
(1970
).24.
Kavian
, O.
, Introduction á la Théorie des Points Critiques et Applications aux Problémes Elliptíques
(Springer-Verlag
, Heidelberg
, 1993
).25.
Liang
, Z. P.
and Su
, J. B.
, “Existence of solitary waves to a generalized Kadomtsev-Petviashvili equation
,” Acta Math. Sci.
32
, 1149
–1156
(2012
).26.
Lions
,P. L.
, “The concentration compactness principle in the calculus of variations. The locally compact case, part 1
,” Ann. Inst. Henri Poincare, Sect. C Nonlinear Anal.
1
(2
) 109
–145
(1984
);Lions
, P. L.
, “The concentration compactness principle in the calculus of variations. The locally compact case, part 2
,” Ann. Inst. Henri Poincare, Sect. C Nonlinear Anal.
1
(4
), 223
–283
(1984
).27.
Lizorkin
,P. I.
, “Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms. Applications
,” Izv. Akad. Nauk SSSR Ser. Mat.
34
(1
), 218
–247
(1970
);Lizorkin
, P. I.
, “Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms. Applications
,” Math. USSR Izv.
4
(1
), 225
–255
(1970
).28.
Mawhin
, J.
and Willem
, M.
, Critical Point Theory and Hamiltonian Systems
(Springer-Verlag
, New York
, 1989
).29.
Oh
, Y. J.
, “Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials on the class (V)a
,” Commun. Partial Differ. Equations
13
, 1499
–1519
(1988
).30.
Pouget
, J.
, “Stability of nonlinear structures in a lattice model for phase transformations in alloys
,” Phys. Rev. B
46
, 10554
–10562
(1992
).31.
Rabinowitz
, P. H.
, “On a class of nonlinear Schrödinger equations
,” Z. Angew. Math. Phys.
43
, 270
–291
(1992
).32.
Saut
, J. C.
, “Recent results on the generalized Kadomtsev-Petviashvili equations
,” Acta Appl. Math.
39
, 477
–1487
(1995
).33.
Szulkin
, A.
and Zou
, W.-M.
, “Homoclinic orbit for asymptotically linear Hamiltonian systems
,” J. Funct. Anal.
187
, 25
–41
(2001
).34.
Tian
, B.
and Gao
, Y.-T.
, “Solutions of a variable-coefficient Kadomtsev-Petviashvili equation via computer algebra
,” Appl. Math. Comput.
84
, 125
–130
(1997
).35.
Xua
, J.
, Wei
, Z.
, and Ding
, Y.
, “Stationary solutions for a generalized Kadomtsev-Petviashvili equation in bounded domain
,” Electron. J. Qual. Theory Differ. Equations
68
, 1
–18
(2012
).36.
Xuan
, B.
, “Nontrivial solitary waves of GKP equation in multi-dimensional spaces
,” Rev. Colomb. Math.
37
, 11
–23
(2003
).37.
Wang
, X.
, “On concentration of positive bound states of nonlinear Schrödinger equations
,” Commun. Math. Phys.
153
, 229
–244
(1993
).38.
Wang
, X. P.
, Ablowitz
, M. J.
, and Segur
, H.
, “Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation
,” Phys. D
78
, 241
–265
(1994
).39.
Wang
, Z. Q.
and Willem
, M.
, “A multiplicity result for the generalized Kadomtsev-Petviashvili equation
,” Topol. Methods Nonlinear Anal.
7
(2
), 261
–270
(1996
).40.
Willem
, M.
, Minimax Theorems
, (Birkhäuser
, Boston, Basel, Berlin
, 1996
).41.
Zhang
, Y.
, Xu
, Y.
, and Ma
, K.
, “New type of a generalized variable-coefficient Kadomtsev-Petviashvili equation with self-consistent sources and its Grammian-type solutions
,” Commun. Nonlinear Sci. Numer. Simul.
37
, 77
–89
(2016
).42.
Zou
, W.-M.
, “Solitary waves of the generalized Kadomtsev-Petviashvili equations
,” Appl. Math. Lett.
15
, 35
–39
(2002
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.