The derivatives of eight Horn hypergeometric functions [four Appell F1, F2, F3, and F4, and four (degenerate) confluent , , , and ] with respect to their parameters are studied. The first derivatives are expressed, systematically, as triple infinite summations or, alternatively, as single summations of two-variable Kampé de Fériet functions. Taking advantage of previously established expressions for the derivative of the confluent or Gaussian hypergeometric functions, the generalization to the nth derivative of Horn’s functions with respect to their parameters is rather straightforward in most cases; the results are expressed in terms of n + 2 infinite summations. Following a similar procedure, mixed derivatives are also treated. An illustration of the usefulness of the derivatives of F1, with respect to the first and third parameters, is given with the study of autoionization of atoms occurring as part of a post-collisional process. Their evaluation setting the Coulomb charge to zero provides the coefficients of a Born-like expansion of the interaction.
Skip Nav Destination
,
,
Article navigation
July 2017
Research Article|
July 24 2017
Derivatives of Horn hypergeometric functions with respect to their parameters Available to Purchase
L. U. Ancarani;
L. U. Ancarani
1
Théorie, Modélisation, Simulation, SRSMC, UMR CNRS 7565, Université de Lorraine
, 57078 Metz, France
Search for other works by this author on:
J. A. Del Punta;
J. A. Del Punta
1
Théorie, Modélisation, Simulation, SRSMC, UMR CNRS 7565, Université de Lorraine
, 57078 Metz, France
2
Departamento de Física, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas
, 8000 Bahía Blanca, Buenos Aires, Argentina
3
Departamento de Matemática, Universidad Nacional del Sur
, 8000 Bahía Blanca, Buenos Aires, Argentina
Search for other works by this author on:
G. Gasaneo
G. Gasaneo
2
Departamento de Física, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas
, 8000 Bahía Blanca, Buenos Aires, Argentina
Search for other works by this author on:
L. U. Ancarani
1
J. A. Del Punta
1,2,3
G. Gasaneo
2
1
Théorie, Modélisation, Simulation, SRSMC, UMR CNRS 7565, Université de Lorraine
, 57078 Metz, France
2
Departamento de Física, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas
, 8000 Bahía Blanca, Buenos Aires, Argentina
3
Departamento de Matemática, Universidad Nacional del Sur
, 8000 Bahía Blanca, Buenos Aires, Argentina
J. Math. Phys. 58, 073504 (2017)
Article history
Received:
December 15 2016
Accepted:
July 01 2017
Citation
L. U. Ancarani, J. A. Del Punta, G. Gasaneo; Derivatives of Horn hypergeometric functions with respect to their parameters. J. Math. Phys. 1 July 2017; 58 (7): 073504. https://doi.org/10.1063/1.4994059
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity
Ramón G. Plaza, Delyan Zhelyazov
Learning from insulators: New trends in the study of conductivity of metals
Giuseppe De Nittis, Max Lein, et al.
The BRST quantisation of chiral BMS-like field theories
José M. Figueroa-O’Farrill, Girish S. Vishwa
Related Content
A special asymptotic limit of a Kampé de Fériet hypergeometric function appearing in nonhomogeneous Coulomb problems
J. Math. Phys. (February 2011)
q2-Kampé de Fériet series and sums of continuous dual q±2-Hahn polynomials
J. Math. Phys. (June 2011)
Derivatives of any order of the confluent hypergeometric function F 1 1 ( a , b , z ) with respect to the parameter a or b
J. Math. Phys. (June 2008)
Polyanalytic relativistic second Bargmann transforms
J. Math. Phys. (May 2015)