The derivatives of eight Horn hypergeometric functions [four Appell F1, F2, F3, and F4, and four (degenerate) confluent Φ1, Φ2, Ψ1, and Ξ1] with respect to their parameters are studied. The first derivatives are expressed, systematically, as triple infinite summations or, alternatively, as single summations of two-variable Kampé de Fériet functions. Taking advantage of previously established expressions for the derivative of the confluent or Gaussian hypergeometric functions, the generalization to the nth derivative of Horn’s functions with respect to their parameters is rather straightforward in most cases; the results are expressed in terms of n + 2 infinite summations. Following a similar procedure, mixed derivatives are also treated. An illustration of the usefulness of the derivatives of F1, with respect to the first and third parameters, is given with the study of autoionization of atoms occurring as part of a post-collisional process. Their evaluation setting the Coulomb charge to zero provides the coefficients of a Born-like expansion of the interaction.

1.
H. M.
Srivastava
and
P. W.
Karlsson
,
Multiple Gaussian Hypergeometric Series
(
Ellis Horwood
,
Chichester
,
1985
).
2.
P.
Appell
and
J.
Kampé de Fériet
,
Fonctions hypergéométriques et Hypersphériques: Polynomes d’Hermite
(
Gauthier-Villars
,
Paris
,
1926
).
3.
A.
Erdelyi
,
W.
Magnus
,
F.
Oberhettinger
, and
F. G.
Tricomi
,
Higher Trascendental Functions
(
McGraw-Hill
,
New York
,
1953
), Vols. I–III.
4.
H.
Exton
,
Multiple Hypergeometric Functions and Applications
(
Wiley
,
New York
,
1976
).
5.
A. I.
Davydychev
,
J. Math. Phys.
33
,
358
(
1992
).
6.
M.
Dudka
,
J. Math. Phys.
56
,
013302
(
2015
).
7.
D.
Greynat
,
J.
Sesma
, and
G.
Vulvert
,
J. Math. Phys.
55
,
043501
(
2014
).
8.
Yu. A.
Brychkov
and
N.
Saad
,
Integr. Transforms Spec. Funct.
25
,
111
(
2014
).
9.
S. B.
Opps
,
N.
Saad
, and
H. M.
Srivastava
,
Appl. Math. Comput.
207
,
545
(
2009
).
10.
V. F.
Tarasov
,
J. Math. Phys.
44
,
1449
(
2003
).
12.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics and Non-Relativistic Theory
, 3rd ed. (
Pergamon Press
,
Oxford
,
1965
).
13.
J.
Murley
and
N.
Saad
,
Appl. Radiat. Isot.
69
,
90
(
2011
).
14.
C.
Kleiber
and
S.
Kotz
,
Statistical Size Distributions in Economics and Actuarial Sciences
(
Wiley
,
New Jersey
,
2003
).
15.
V. A.
Smirnov
,
Feynman Integral Calculus
(
Springer
,
Berlin
,
2006
).
16.
V. V.
Bytev
and
B. A.
Kniehl
,
Comput. Phys. Commun.
189
,
128
(
2015
).
17.
A. V.
Kargovsky
,
Phys. Rev. E
86
,
061114
(
2012
).
18.
P.
Cooper
,
S.
Dubovsky
,
V.
Gorbenko
,
A.
Mohsena
, and
S.
Storace
,
J. High Energy Phys.
127
,
1
(
2015
).
19.
G.
Gasaneo
and
L. U.
Ancarani
,
Phys. Rev. A
80
,
062717
(
2009
).
20.
A.
Contreras-Astorga
and
A.
Schulze-Halberg
,
J. Math. Phys.
55
,
103506
(
2014
).
22.
A.
Contreras-Astorga
and
A.
Schulze-Halberg
,
J. Phys. A
48
,
315202
(
2015
).
23.
M. Yu.
Kalmykov
and
B. A.
Kniehl
,
Nucl. Phys. B
809
,
365
(
2009
).
24.
D.
Greynat
and
J.
Sesma
,
Comput. Phys. Commun.
185
,
472
(
2014
).
25.
I. S.
Ansari
,
M.-S.
Alouini
, and
J.
Cheng
,
IEEE Trans. Wireless Commun.
14
,
4248
(
2015
).
26.
M.
Rao
,
F. J.
Lopez-Martinez
,
M.-S.
Alouini
, and
A.
Goldsmith
,
IEEE Trans. Wireless Commun.
14
,
2548
(
2015
).
27.
D. S.
Michalopoulos
and
R.
Schober
, in
Global Communications Conference (GLOBECOM)
(
IEEE
,
Atlanta, GA
,
2013
), pp.
3884
3889
.
28.
S.
Gurugopinath
,
R.
Akula
,
C. R.
Murthy
,
U.
Prasanna
, and
B.
Amruthur
,
Phys. Commun.
17
,
172
(
2015
).
29.
F.
Droste
, “
Signal transmission in stochastic neuron models with non-white or non-Gaussian noise
,” Ph.D. thesis,
Humboldt-Universität zu Berlin
,
2015
.
30.
S.
Chipindirwi
, “
Analysis of a simple gene expression model
,” M.S. thesis,
University of Zimbabwe
,
2012
.
31.
W.
Lian
, “
Predictive models for point processes
,” M.S. thesis,
Duke University
,
2015
.
32.
C.
Paroissin
and
A.
Salami
,
Commun. Stat.-Theory Methods
43
,
3148
(
2014
).
33.
I.
Gregory
,
P.
Knox
, and
C.
Oliver-Ewald
, in
23rd Australasian Finance and Banking Conference 2010
,
2011
.
34.
L. U.
Ancarani
and
G.
Gasaneo
,
J. Math. Phys.
49
,
063508
(
2008
).
35.
V.
Sahai
and
A.
Verma
,
J. Inequalities Spec. Funct.
6
,
1
(
2015
), http://www.ilirias.com.
36.
M. Y.
Kalmykov
and
B. A.
Kniehl
,
Phys. Part. Nucl.
41
,
942
(
2010
).
37.
V. V.
Bytev
,
M. Yu.
Kalmykov
, and
S.
Moch
,
Comput. Phys. Commun.
185
,
3041
(
2014
).
38.
C.
Anzai
and
Y.
Sumino
,
J. Math. Phys.
54
,
033514
(
2013
).
39.
S.
Moch
,
P.
Uwer
, and
S.
Weinzierl
,
J. Math. Phys.
43
,
3363
(
2002
).
40.
V. V.
Bytev
,
M. Yu.
Kalmykov
, and
B. A.
Kniehl
,
Comput. Phys. Commun.
184
,
2332
(
2013
).
41.
Z. W.
Huang
and
J.
Liu
,
Comput. Phys. Commun.
184
,
1973
(
2013
).
42.
L. U.
Ancarani
and
G.
Gasaneo
,
J. Phys. A: Math. Theor.
42
,
395208
(
2009
).
43.
L. U.
Ancarani
and
G.
Gasaneo
,
J. Phys. A: Math. Theor.
43
,
085210
(
2010
).
44.
A. W.
Babister
,
Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations
(
The Macmillan Company
,
New York
,
1967
).
45.
J. L.
Burchnall
,
Q. J. Math.
os-13
,
90
(
1942
).
46.
B. H.
Bransden
and
C. J.
Joachain
,
Physics of Atoms and Molecules
(
Pearson Education Limited
,
2013
).
47.
G.
Gasaneo
,
F. D.
Colavecchia
,
C. R.
Garibotti
,
J. E.
Miraglia
, and
P.
Macri
,
Phys. Rev. A
55
,
2809
(
1997
).
48.
F. D.
Colavecchia
,
G.
Gasaneo
, and
C. R.
Garibotti
,
Phys. Rev. A
58
,
2926
(
1998
).
49.
S.
Martínez
,
S.
Otranto
,
S.
Suarez
, and
C. R.
Garibotti
,
J. Phys.: Conf. Ser.
194
,
082045
(
2009
).
50.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
51.
H. M.
Srivastava
and
H. L.
Manocha
,
A Treatise on Generating Functions
(
Ellis Horwood Ltd.
,
Chichester
,
1978
).
52.
R. O.
Barrachina
and
J. H.
Macek
,
J. Phys. B: At., Mol. Opt. Phys.
22
,
2151
(
1989
).
53.
G.
Gasaneo
and
S.
Otranto
,
Phys. Scr.
70
,
251
(
2004
).
54.
G.
Gasaneo
and
S.
Otranto
, private communication (2004).
You do not currently have access to this content.