We consider the differential equation that Zernike proposed to classify aberrations of wavefronts in a circular pupil, as if it were a classical Hamiltonian with a non-standard potential. The trajectories turn out to be closed ellipses. We show that this is due to the existence of higher-order invariants that close into a cubic Higgs algebra. The Zernike classical system thus belongs to the class of superintegrable systems. Its Hamilton-Jacobi action separates into three vertical projections of polar coordinates of sphere, polar, and equidistant coordinates on half-hyperboloids, and also in elliptic coordinates on the sphere.

1.
Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects
, edited by
Bagarello
,
F.
,
Gazeau
,
J.-P.
,
Szafraniec
,
F. H.
, and
Znojil
,
M.
(
John Wiley & Sons
,
Hoboken
,
2015
).
2.
Bender
,
C. M.
,
Brody
,
D. C.
, and
Müller
,
M. P.
, “
Hamiltonian for the zeros of the Riemann zeta function
,”
Phys. Rev. Lett.
118
,
130201
(
2017
).
3.
Bertrand
,
J.
, “
Théorème relatif au mouvement d’un point attiré vers un centre fixe
,”
C. R. Acad. Sci.
77
,
849
853
(
1873
).
4.
Bhatia
,
A. B.
and
Wolf
,
E.
, “
On the circle polynomials of Zernike and related orthogonal sets
,”
Math. Proc. Cambridge Philos. Soc.
50
,
40
48
(
1954
).
5.
Born
,
M.
and
Wolf
,
E.
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
, 7th ed. (
Cambridge University Press
,
1999
), p.
986
.
6.
Cariñena
,
J. F.
,
Rañada
,
M. F.
, and
Santander
,
M.
, “
Two important examples of nonlinear oscillators
,” e-print arXiv:math-ph/0505028.
7.
Cariñena
,
J. F.
,
Perelomov
,
A. M.
, and
Rañada
,
M. F.
, “
Isochronous classical systems and quantum systems with equally spaced spectra
,”
J. Phys.: Conf. Ser.
87
,
012007
(
2007
).
8.
Gradshteyn
,
I. S.
and
Ryzhik
,
I. M.
,
Table of Integrals, Series, and Products
, 6th ed. (
Academic Press
,
2000
).
9.
Higgs
,
P. W.
, “
Dynamical symmetries in a spherical geometry
,”
J. Phys. A: Math. Gen.
12
,
309
323
(
1979
).
10.
Ismail
,
M. E. H.
and
Zhang
,
R.
, “
Classes of bivariate orthogonal polynomials
,”
SIGMA
12
,
021
(
2016
); e-print arXiv:1502.07256.
11.
Kintner
,
E. C.
, “
On the mathematical properties of the Zernike polynomials
,”
Opt. Acta
23
,
679
680
(
1976
).
12.
Lukac
,
I.
and
Smorodinskiĭ
,
Ya. A.
, “
Wave functions for the asymmetric top
,”
Sov. Phys. JETP
30
,
728
730
(
1970
).
13.
Lukach
,
I.
, “
A complete set of the quantum-mechanical observables on a two-dimensional sphere
,”
Theor. Math. Phys.
14
,
271
281
(
1973
).
14.
Miller
, Jr.,
W.
,
Post
,
S.
, and
Winternitz
,
P.
, “
Classical and quantum superintegrability with applications
,”
J. Phys. A: Math. Theor.
47
,
423001
(
2014
).
15.
Myrick
,
D. R.
, “
A generalization of the radial polynomials of F. Zernike
,”
SIAM J. Appl. Math.
14
,
476
489
(
1966
).
16.
Olevskiĭ
,
M. N.
, “
Triorthogonal systems in spaces of constant curvature in which the equation Δ2u+λu=0 allows a complete separation of variables
,”
Mat. Sbornik
27
,
379
426
(
1950
).
17.
Pogosyan
,
G. S.
,
Sissakian
,
A. N.
, and
Winternitz
,
P.
, “
Separation of variables and Lie algebra contractions. Applications to special functions
,”
Phys. Part. Nuclei
33
(
Suppl. 1
),
S123
S144
(
2002
).
18.
Pogosyan
,
G. S.
and
Yakhno
,
A.
, “
Lie algebra contractions and separation of variables on two-dimensional hyperboloidal coordinate systems
,” e-print arXiv 1510.03785 V1 (
2015
).
19.
Rodrigo
,
J. A.
,
Alieva
,
T.
, and
Bastiaans
,
T. J.
, “
Phase space rotators and their applications in optics
,” in
Optical and Digital Image Processing: Fundamentals and Applications
, edited by
Cristóbal
,
G.
,
Schelkens
,
P.
, and
Thienpont
,
H.
(
Wiley-VCH Verlag
,
2011
), pp.
251
271
.
20.
Shakibaei
,
B. H.
and
Paramesran
,
R.
, “
Recursive formula to compute Zernike radial polynomials
,”
Opt. Lett.
38
,
2487
2489
(
2013
).
21.
Simon
,
R.
and
Wolf
,
K. B.
, “
Structure of the set of paraxial optical systems
,”
J. Opt. Soc. Am. A
17
,
342
355
(
2000
).
22.
Tango
,
W. J.
, “
The circle polynomials of Zernike and their application in optics
,”
Appl. Phys.
13
,
327
332
(
1977
).
23.
Winternitz
,
P.
,
Lukac
,
P.
, and
Smorodinskiĭ
,
Ya. A.
, “
Quantum numbers in the little groups of the Poincaré group
,”
Sov. J. Nucl. Phys.
7
,
139
145
(
1968
).
24.
Winternitz
,
P.
,
Smorodinsky
,
J.
, and
Sheftel
,
M.
, “
Poincaré and Lorentz invariant expansions of relativistic amplitudes
,”
Sov. J. Nucl. Phys.
7
,
785
792
(
1968
).
25.
Wolf
,
K. B.
,
Geometric Optics on Phase Space
(
Springer
,
Heidelberg
,
2004
).
26.
Wünsche
,
A.
, “
Generalized Zernike or disc polynomials
,”
J. Comput. Appl. Math.
174
,
135
163
(
2005
).
27.
Zernike
,
F.
, “
Beugungstheorie des schneidenverfahrens und seiner verbesserten form der phasenkontrastmethode
,”
Physica
1
,
689
704
(
1934
).
You do not currently have access to this content.