If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i’s, we say that 𝔤 is simply assembled from the 𝔤i’s. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i’s, one obtains a Lie algebra assembled in two steps from 𝔤i’s, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.

1.
Cabras
,
A.
and
Vinogradov
,
M. A.
, “
Extension of the Poisson bracket to differential forms and multi-vector fields
,”
J. Geom. Phys.
9
(
1
),
75
100
(
1992
).
2.
Filippov
,
T. V.
, “
N-ary Lie algebras
,”
Sib. Math. J.
9
,
126
140
(
1985
).
3.
Hanlon
,
P.
and
Wachs
,
L. M.
, “
On Lie k-algebras
,”
Adv. Math.
113
,
206
236
(
1995
).
4.
Humphreys
,
E. J.
,
Introduction to Lie Algebras and Representation Theory
, Graduate Texts in Mathematics Vol. 9 (
Springer-Verlag
,
New York
,
1978
).
5.
Jacobson
,
N.
,
Lie Algebras
(
Wiley International
,
New York, London
,
1962
).
6.
Kosmann-Schwarzbach
,
Y.
, “
Poisson manifolds, Lie algebroids, modular classes: A survey
,”
Symmetry, Integrability Geom.: Methods Appl.
4
,
30
(
2008
).
7.
Koszul
,
J.-L.
, “
Crochet de Schouten-Nijenhuis et cohomologie, in the mathematical heritage of Élie Cartan (Lyon, 1984)
,”
Astérisque
257
291
(
1985
).
8.
Mackenzie
,
K.
,
General Theory of Lie Groupoids and Lie Algebroids
(
Cambridge University Press
,
2005
).
9.
Magri
,
F.
, “
A simple model of the integrable Hamiltonian equation
,”
J. Math. Phys.
19
,
1156
1162
(
1978
).
10.
Marmo
,
G.
,
Vilasi
,
G.
, and
Vinogradov
,
M. A.
, “
The local structure of n-Poisson and n-Jacobi manifolds
,”
J. Geom. Phys.
25
,
141
182
(
1998
).
11.
Moreno
,
G.
, “
The Bianchi variety
,”
Differ. Geom. Appl.
28
(
6
),
705
721
(
2010
).
12.
Nestruev
,
J.
,
Smooth Manifolds and Observables
, Graduate Texts in Mathematics Vol. 220 (
Springer
,
2002
).
13.
Vinogradov
,
M. A.
, “
The union of the Schouten and Nijenhuis brackets, cohomology, and superdifferential operators (Russian)
,”
Mat. Zametki
47
(
6
),
138
140
(
1990
).
14.
Vinogradov
,
M. A.
, “
Particle-like structure of Lie algebras II: Coaxial algebras
” (unpublished).
15.
Vinogradov
,
M. A.
and
Krasil’shchik
,
I. S.
, “
What is the Hamiltonian formalism?
,”
Uspehi Mat. Nauk
30
(
1
),
173
198
(
1975
) (in Russian)
Vinogradov
,
M. A.
and
Krasil’shchik
,
I. S.
, [
Russian Math. Surveys
30
(
1
),
177
202
(
1975
)];
Vinogradov
,
M. A.
and
Krasil’shchik
,
I. S.
See also
London Math. Soc. Lect. Notes
60
,
241
299
(
1981
).
16.
Vinogradov
,
M. A.
and
Vinogradov
,
M. M.
, “
On multiple generalization of Lie algebras and Poisson manifolds
,”
Contemp. Math.
219
,
273
287
(
1998
).
17.
Vinogradov
,
M. A.
and
Vinogradov
,
M. M.
, “
Graded multiple analogs of Lie algebras
,”
Acta Appl. Math.
72
,
183
197
(
2002
).
18.
Weinstein
,
A.
, “
The local structure of Poisson manifolds
,”
J. Differ. Geom.
18
(
3
),
523
557
(
1983
).
19.

Pf is, in fact, the opposite of the usual Hamiltonian vector field but more convenient in the context of this paper.

You do not currently have access to this content.