The search for a potential function S allowing us to reconstruct a given metric tensor g and a given symmetric covariant tensor T on a manifold M is formulated as the Hamilton-Jacobi problem associated with a canonically defined Lagrangian on TM. The connection between this problem, the geometric structure of the space of pure states of quantum mechanics, and the theory of contrast functions of classical information geometry are outlined.

1.
I.
Bengtsson
and
K.
Zyczkowski
,
Geometry of Quantum States: An Introduction to Quantum Entanglement
(
Cambridge University Press
,
Cambridge
,
2006
).
2.
A.
Ashtekar
and
T. A.
Schilling
, “
Geometrical formulation of quantum mechanics
,” in
On Einstein’s Path: Essays in Honor of Engelbert Schucking
(
Springer
,
New York
,
1999
), pp.
23
65
.
3.
E.
Ercolessi
,
G.
Marmo
, and
G.
Morandi
, “
From the equations of motion to the canonical commutation relations
,”
Riv. Nuovo Cimento Soc. Ital. Fis.
33
,
401
590
(
2010
).
4.
J. P.
Provost
and
G.
Vallee
, “
Riemannian structure on manifolds of quantum states
,”
Commun. Math. Phys.
76
,
289
301
(
1980
).
5.
P.
Facchi
,
R.
Kulkarni
,
V. I.
Man’ko
,
G.
Marmo
,
E. C. G.
Sudarshan
, and
F.
Ventriglia
, “
Classical and quantum fisher information in the geometrical formulation of quantum mechanics
,”
Phys. Lett. A
374
(
48
),
4801
4803
(
2010
).
6.
S. I.
Amari
and
H.
Nagaoka
,
Methods of Information Geometry
(
American Mathematical Society
,
Providence, Rhode Island
,
2000
).
7.
J.
Zhang
and
F.
Li
, “
Symplectic and Kähler structures on statistical manifolds induced from divergence functions
,” in
Geometric Science of Information
(
Springer-Verlag
,
Berlin, Heidelberg
,
2013
), pp.
595
603
.
8.
S. I.
Amari
,
O. E.
Barndorff-Nielsen
,
R. E.
Kass
,
S. L.
Lauritzen
, and
C. R.
Rao
,
Differential Geometry in Statistical Inference
(
Institute of Mathematical Statistics
,
Hayward, California
,
1987
).
9.
N.
Ay
and
W.
Tuschmann
, “
Dually flat manifolds and global information geometry
,”
Open Syst. Inf. Dyn.
9
(
2
),
195
200
(
2002
).
10.
N.
Ay
and
W.
Tuschmann
, “
Duality versus dual flatness in quantum information geometry
,”
J. Math. Phys.
44
(
4
),
1512
1518
(
2003
).
11.
T.
Matumoto
, “
Any statistical manifold has a contrast function: On the c3-functions taking the minimum at the diagonal of the product manifold
,”
Hiroshima Math. J.
23
(
2
),
327
332
(
1993
).
12.
N.
Ay
and
S. I.
Amari
, “
A novel approach to canonical divergences within information geometry
,”
Entropy
17
(
12
),
8111
8129
(
2015
).
13.
D.
Petz
and
C.
Sudár
, “
Monotone metrics on matrix spaces
,”
Linear Algebra Appl.
244
,
81
96
(
1996
).
14.
D.
Petz
,
Quantum Information Theory and Quantum Statistics
(
Springer
,
Berlin, Heidelberg
,
2007
).
15.
G.
Marmo
,
G.
Morandi
, and
N.
Mukunda
, “
A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations
,”
Riv. Nuovo Cimento Soc. Ital. Fis.
13
,
1
74
(
1990
).
16.
V. I.
Arnol’d
,
Mathematical Methods of Classical Mechanics
(
Springer
,
Berlin
,
1978
).
17.
R.
Abraham
and
J. E.
Marsden
,
Foundations of Mechanics
, 2nd ed. (
Addison-Wesley Publishing Co., Inc.
,
Redwood City, CA
,
1978
).
18.
C.
Lanczos
,
The Variational Principles of Mechanics
(
University of Toronto Press
,
Toronto
,
1952
).
19.
J. F.
Cariñena
,
A.
Ibort
,
G.
Marmo
, and
G.
Morandi
,
Geometry from Dynamics, Classical and Quantum
(
Springer
,
Berlin
,
2015
).
20.
G.
Morandi
,
C.
Ferrario
,
G.
Lo Vecchio
,
G.
Marmo
, and
C.
Rubano
, “
The inverse problem in the calculus of variations and the geometry of the tangent bundle
,”
Phys. Rep.
188
,
147
284
(
1990
).
21.
W. K.
Wootters
, “
Statistical distance and Hilbert space
,”
Phys. Rev. D
23
(
2
),
357
(
1981
).
22.
V. I.
Man’ko
,
G.
Marmo
,
F.
Ventriglia
, and
P.
Vitale
, “
Metric on the space of quantum states from relative entropy. Tomographic reconstruction
,” e-print arXiv:1612.07986 [quant-ph].
23.
J. F.
Cariñena
,
X.
Gràcia
,
G.
Marmo
,
E.
Martínez
,
M. C.
Muñoz Lecanda
, and
N.
Román-Roy
, “
Geometric Hamilton-Jacobi theory
,”
Int. J. Geom. Methods Modern Phys.
03
(
07
),
1417
1458
(
2006
).
24.
S. I.
Amari
,
Information Geometry and its Application
(
Springer
,
Japan
,
2016
).
25.
J. M.
Souriau
, “
Thermodynamique et Geometrie
,” in
Differential Geometrical Methods in Mathematical Physics II: Proceedings, University of Bonn, July 13–16, 1977
(
Springer-Verlag
,
Berlin, Heidelberg
,
1978
), pp.
369
397
.
26.

These are metric tensors satisfying the so-called monotonicity property, i.e., the scalar product they induce on tangent vectors does not increase under the action of completely positive trace-preserving (CPTP) maps.

27.

Note that, at this level, formulas (33) and (34) are valid for every dynamical curve γ.

You do not currently have access to this content.