The search for a potential function S allowing us to reconstruct a given metric tensor g and a given symmetric covariant tensor T on a manifold is formulated as the Hamilton-Jacobi problem associated with a canonically defined Lagrangian on . The connection between this problem, the geometric structure of the space of pure states of quantum mechanics, and the theory of contrast functions of classical information geometry are outlined.
REFERENCES
1.
I.
Bengtsson
and K.
Zyczkowski
, Geometry of Quantum States: An Introduction to Quantum Entanglement
(Cambridge University Press
, Cambridge
, 2006
).2.
A.
Ashtekar
and T. A.
Schilling
, “Geometrical formulation of quantum mechanics
,” in On Einstein’s Path: Essays in Honor of Engelbert Schucking
(Springer
, New York
, 1999
), pp. 23
–65
.3.
E.
Ercolessi
, G.
Marmo
, and G.
Morandi
, “From the equations of motion to the canonical commutation relations
,” Riv. Nuovo Cimento Soc. Ital. Fis.
33
, 401
–590
(2010
).4.
J. P.
Provost
and G.
Vallee
, “Riemannian structure on manifolds of quantum states
,” Commun. Math. Phys.
76
, 289
–301
(1980
).5.
P.
Facchi
, R.
Kulkarni
, V. I.
Man’ko
, G.
Marmo
, E. C. G.
Sudarshan
, and F.
Ventriglia
, “Classical and quantum fisher information in the geometrical formulation of quantum mechanics
,” Phys. Lett. A
374
(48
), 4801
–4803
(2010
).6.
S. I.
Amari
and H.
Nagaoka
, Methods of Information Geometry
(American Mathematical Society
, Providence, Rhode Island
, 2000
).7.
J.
Zhang
and F.
Li
, “Symplectic and Kähler structures on statistical manifolds induced from divergence functions
,” in Geometric Science of Information
(Springer-Verlag
, Berlin, Heidelberg
, 2013
), pp. 595
–603
.8.
S. I.
Amari
, O. E.
Barndorff-Nielsen
, R. E.
Kass
, S. L.
Lauritzen
, and C. R.
Rao
, Differential Geometry in Statistical Inference
(Institute of Mathematical Statistics
, Hayward, California
, 1987
).9.
N.
Ay
and W.
Tuschmann
, “Dually flat manifolds and global information geometry
,” Open Syst. Inf. Dyn.
9
(2
), 195
–200
(2002
).10.
N.
Ay
and W.
Tuschmann
, “Duality versus dual flatness in quantum information geometry
,” J. Math. Phys.
44
(4
), 1512
–1518
(2003
).11.
T.
Matumoto
, “Any statistical manifold has a contrast function: On the c3-functions taking the minimum at the diagonal of the product manifold
,” Hiroshima Math. J.
23
(2
), 327
–332
(1993
).12.
N.
Ay
and S. I.
Amari
, “A novel approach to canonical divergences within information geometry
,” Entropy
17
(12
), 8111
–8129
(2015
).13.
D.
Petz
and C.
Sudár
, “Monotone metrics on matrix spaces
,” Linear Algebra Appl.
244
, 81
–96
(1996
).14.
D.
Petz
, Quantum Information Theory and Quantum Statistics
(Springer
, Berlin, Heidelberg
, 2007
).15.
G.
Marmo
, G.
Morandi
, and N.
Mukunda
, “A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations
,” Riv. Nuovo Cimento Soc. Ital. Fis.
13
, 1
–74
(1990
).16.
V. I.
Arnol’d
, Mathematical Methods of Classical Mechanics
(Springer
, Berlin
, 1978
).17.
R.
Abraham
and J. E.
Marsden
, Foundations of Mechanics
, 2nd ed. (Addison-Wesley Publishing Co., Inc.
, Redwood City, CA
, 1978
).18.
C.
Lanczos
, The Variational Principles of Mechanics
(University of Toronto Press
, Toronto
, 1952
).19.
J. F.
Cariñena
, A.
Ibort
, G.
Marmo
, and G.
Morandi
, Geometry from Dynamics, Classical and Quantum
(Springer
, Berlin
, 2015
).20.
G.
Morandi
, C.
Ferrario
, G.
Lo Vecchio
, G.
Marmo
, and C.
Rubano
, “The inverse problem in the calculus of variations and the geometry of the tangent bundle
,” Phys. Rep.
188
, 147
–284
(1990
).21.
W. K.
Wootters
, “Statistical distance and Hilbert space
,” Phys. Rev. D
23
(2
), 357
(1981
).22.
V. I.
Man’ko
, G.
Marmo
, F.
Ventriglia
, and P.
Vitale
, “Metric on the space of quantum states from relative entropy. Tomographic reconstruction
,” e-print arXiv:1612.07986 [quant-ph].23.
J. F.
Cariñena
, X.
Gràcia
, G.
Marmo
, E.
Martínez
, M. C.
Muñoz Lecanda
, and N.
Román-Roy
, “Geometric Hamilton-Jacobi theory
,” Int. J. Geom. Methods Modern Phys.
03
(07
), 1417
–1458
(2006
).24.
S. I.
Amari
, Information Geometry and its Application
(Springer
, Japan
, 2016
).25.
J. M.
Souriau
, “Thermodynamique et Geometrie
,” in Differential Geometrical Methods in Mathematical Physics II: Proceedings, University of Bonn, July 13–16, 1977
(Springer-Verlag
, Berlin, Heidelberg
, 1978
), pp. 369
–397
.26.
These are metric tensors satisfying the so-called monotonicity property, i.e., the scalar product they induce on tangent vectors does not increase under the action of completely positive trace-preserving (CPTP) maps.
© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.