Pedal coordinates (instead of polar or Cartesian coordinates) are more natural settings in which to study force problems of classical mechanics in the plane. We will show that the trajectory of a test particle under the influence of central and Lorentz-like forces can be translated into pedal coordinates at once without the need of solving any differential equation. This will allow us to generalize Newton theorem of revolving orbits to include nonlocal transforms of curves. Finally, we apply developed methods to solve the “dark Kepler problem,” i.e., central force problem where in addition to the central body, gravitational influences of dark matter and dark energy are assumed.
REFERENCES
1.
Bertrand
, J.
, “Théorème relatif au mouvement d’un point attiré vers un centre fixe
,” C. R. Acad. Sci.
77
, 849
–853
(1873
).2.
Budan
, F. D.
, Nouvelle Méthode Pour la Résolution des Équations Numériques
(Courcier
, Paris
, 1807
).3.
4.
Fourier
, J.
and Joseph
, B.
, “Sur l’usage du théorème de Descartes dans la recherche des limites des racines
,” Bulletin des Sciences, par la Société Philomatique de Paris
156
–165
(1820
).5.
6.
Lynden-Bell
, D.
and Lynden-Bell
, R. M.
, “On the shapes of Newton’s revolving orbits
,” Notes Rec. R. Soc. London
51
(2
), 195
–198
(1997
).7.
Lynden-Bell
, D.
and Jin
, S.
, “Analytic central orbits and their transformation group
,” Mon. Not. R. Astron. Soc.
386
(1
), 245
–260
(2008
); e-print arXiv:0711.3491, freely accessible. Bibcode:2008MNRAS.386.245L.8.
Mahomed
, F. M.
and Vawda
, F.
, “Application of symmetries to central force problems
,” Nonlinear Dyn.
21
(4
), 307
–315
(2000
).9.
Newton
, I.
, The Principia: Mathematical Principles of Natural Philosophy
, 3rd ed., translated by Bernard Cohen
, I.
and Whitman
, A.
, assisted by Budenz
, J.
(University of California Press
, Berkeley, CA
, 1726, 1999
), pp. 147–
148, pp. 246–264, pp. 534–545
, ISBN: 978-0-520-08816-0.10.
Schwarzschild
, K.
, “Über das gravitationsfeld eines massenpunktes nach der Einstein’schen Theorie
,” Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
1
, 189
–196
(1916
).11.
An Elementary Treatise on the Differential Calculus
, edited by Williamson
, B.
(Logmans, Green, and Co.
, 1899
).12.
Yates
, R. C.
, “Pedal equations
,” in A Handbook on Curves and Their Properties
, edited by Edwards
, J. W.
(Literary Licensing
, LLC
, 2012
).13.
Zwikker
, C.
, The Advanced Geometry of Plane Curves and Their Applications
(Dover
, New York
, 1963
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.