Pedal coordinates (instead of polar or Cartesian coordinates) are more natural settings in which to study force problems of classical mechanics in the plane. We will show that the trajectory of a test particle under the influence of central and Lorentz-like forces can be translated into pedal coordinates at once without the need of solving any differential equation. This will allow us to generalize Newton theorem of revolving orbits to include nonlocal transforms of curves. Finally, we apply developed methods to solve the “dark Kepler problem,” i.e., central force problem where in addition to the central body, gravitational influences of dark matter and dark energy are assumed.

1.
Bertrand
,
J.
, “
Théorème relatif au mouvement d’un point attiré vers un centre fixe
,”
C. R. Acad. Sci.
77
,
849
853
(
1873
).
2.
Budan
,
F. D.
,
Nouvelle Méthode Pour la Résolution des Équations Numériques
(
Courcier
,
Paris
,
1807
).
3.
Edwards
,
J.
,
Differential Calculus
(
MacMillan and Co.
,
London
,
1892
), p.
161
.
4.
Fourier
,
J.
and
Joseph
,
B.
, “
Sur l’usage du théorème de Descartes dans la recherche des limites des racines
,”
Bulletin des Sciences, par la Société Philomatique de Paris
156
165
(
1820
).
5.
Lawrence
,
J. D.
,
A Catalog of Special Plane Curves
(
Dover
,
New York
,
1972
).
6.
Lynden-Bell
,
D.
and
Lynden-Bell
,
R. M.
, “
On the shapes of Newton’s revolving orbits
,”
Notes Rec. R. Soc. London
51
(
2
),
195
198
(
1997
).
7.
Lynden-Bell
,
D.
and
Jin
,
S.
, “
Analytic central orbits and their transformation group
,”
Mon. Not. R. Astron. Soc.
386
(
1
),
245
260
(
2008
); e-print arXiv:0711.3491, freely accessible. Bibcode:2008MNRAS.386.245L.
8.
Mahomed
,
F. M.
and
Vawda
,
F.
, “
Application of symmetries to central force problems
,”
Nonlinear Dyn.
21
(
4
),
307
315
(
2000
).
9.
Newton
,
I.
,
The Principia: Mathematical Principles of Natural Philosophy
, 3rd ed., translated by
Bernard Cohen
,
I.
and
Whitman
,
A.
, assisted by
Budenz
,
J.
(
University of California Press
,
Berkeley, CA
,
1726, 1999
), pp.
147–
148, pp. 246–264, pp. 534–545
, ISBN: 978-0-520-08816-0.
10.
Schwarzschild
,
K.
, “
Über das gravitationsfeld eines massenpunktes nach der Einstein’schen Theorie
,”
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
1
,
189
196
(
1916
).
11.
An Elementary Treatise on the Differential Calculus
, edited by
Williamson
,
B.
(
Logmans, Green, and Co.
,
1899
).
12.
Yates
,
R. C.
, “
Pedal equations
,” in
A Handbook on Curves and Their Properties
, edited by
Edwards
,
J. W.
(
Literary Licensing
,
LLC
,
2012
).
13.
Zwikker
,
C.
,
The Advanced Geometry of Plane Curves and Their Applications
(
Dover
,
New York
,
1963
).
You do not currently have access to this content.