In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L-algebroid encoding symmetry. The relationship to other formulations where the L-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.

1.
J. C.
Baez
and
J.
Huerta
, “
An invitation to higher gauge theory
,”
Gen. Relativ. Gravitation
43
,
2335
(
2011
); e-print arXiv:1003.4485 [hep-th].
2.
C.
Saemann
, “
Lectures on higher structures in m-theory
,” e-print arXiv:1609.09815 [hep-th].
3.
J.
Baez
and
J.
Dolan
, “
Categorification
,” in
Higher Category Theory
, Contemporary Mathematics Vol. 230, edited by
E.
Getzler
and
M.
Kapranov
(
AMS
,
1998
), p.
1
; e-print arXiv: math.QA/9802029.
4.
J. C.
Baez
, “
Higher Yang-Mills theory
,” e-print arXiv:hep-th/0206130.
5.
J. C.
Baez
and
U.
Schreiber
, “
Higher gauge theory: 2-connections on 2-bundles
,” e-print arXiv:hep-th/0412325.
6.
J. C.
Baez
and
U.
Schreiber
, “
Higher gauge theory
,” in
Categories in Algebra, Geometry and Mathematical Physics
, Contemporary Mathematics Vol. 431, edited by
A.
Davydov
et al. (
AMS
,
2007
), p.
7
; e-print arXiv:math/0511710.
7.
H.
Sati
,
U.
Schreiber
, and
J.
Stasheff
, “
L algebra connections and applications to string and Chern-Simons n–transport
,” in
Quantum Field Theory
, edited by
B.
Fauser
,
J.
Tolksdorf
, and
E.
Zeidler
(
Birkhauser
,
2009
); e-print arXiv:0801.3480 [math.DG].
8.
D.
Fiorenza
,
U.
Schreiber
, and
J.
Stasheff
, “
Čech cocycles for differential characteristic classes. An –Lie theoretic construction
,”
Adv. Theor. Math. Phys.
16
,
149
(
2012
); e-print arXiv:1011.4735 [math.AT].
9.
P.
Ritter
and
C.
Saemann
, “
Lie 2-algebra models
,”
J. High Energy Phys.
2014
,
066
; e-print arXiv:1308.4892 [hep-th].
10.
P.
Ritter
,
C.
Smann
, and
L.
Schmidt
, “
Generalized higher gauge theory
,”
J. High Energy Phys.
2016
,
032
; e-print arXiv:1512.07554 [hep-th].
11.
B.
Jurco
,
C.
Saemann
, and
M.
Wolf
, “
Semistrict higher gauge theory
,”
J. High Energy Phys.
2015
,
087
; e-print arXiv:1403.7185 [hep-th].
12.
B.
Jurco
,
C.
Saemann
, and
M.
Wolf
, “
Higher groupoid bundles, higher spaces, and self-dual tensor field equations
,”
Fortschr. Phys.
64
,
674
(
2016
); e-print arXiv:1604.01639 [hep-th].
13.
J.
Baez
and
A.
Lauda
, “
Higher dimensional algebra V: 2-groups
,”
Theor. Appl. Categor.
12
,
423
(
2004
); e-print arXiv:math.0307200.
14.
J. C.
Baez
and
A. S.
Crans
, “
Higher dimensional algebra VI: Lie 2–algebras
,”
Theor. Appl. Categor.
12
,
492
(
2004
); e-print arXiv:math/0307263.
15.
T.
Lada
and
J.
Stasheff
, “
Introduction to SH Lie algebras for physicists
,”
Int. J. Theor. Phys.
32
,
1087
(
1993
); e-print arXiv:hep-th/9209099.
16.
T.
Lada
and
M.
Markl
, “
Strongly homotopy Lie algebras
,”
Commun. Algebra
23
,
2147
(
1995
); e-print arXiv:hep-th/9406095.
17.
J. L.
Brylinski
,
Loop Spaces, Characteristic Classes and Geometric Quantization
, Progress in Mathematics (
Birkhuser
,
1993
).
18.
L.
Breen
and
W.
Messing
, “
Differential geometry of gerbes
,”
Adv. Math.
198
,
732
(
2005
); e-print arXiv:math/0106083.
19.
R.
Zucchini
, “
On higher holonomy invariants in higher gauge theory. I
,”
Int. J. Geom. Methods Mod. Phys.
13
(
07
),
1650090
(
2016
); e-print arXiv:1505.02121 [hep-th].
20.
R.
Zucchini
, “
On higher holonomy invariants in higher gauge theory. II
,”
Int. J. Geom. Methods Mod. Phys.
13
(
07
),
1650091
(
2016
); e-print arXiv:1505.02122 [hep-th].
21.
U.
Schreiber
, “
Differential cohomology in a cohesive ∞–topos
,” e-print arXiv:1310.7930 [math-ph].
22.
E.
Sharpe
, “
Notes on generalized global symmetries in QFT
,”
Fortschr. Phys.
63
,
659
(
2015
); e-print arXiv:1508.04770 [hep-th].
23.
S.
Palmer
and
C.
Saemann
, “
The ABJM model is a higher gauge theory
,”
Int. J. Geom. Methods Mod. Phys.
11
(
08
),
1450075
(
2014
); e-print arXiv:1311.1997 [hep-th].
24.
S.
Palmer
and
C.
Saemann
, “
Six-dimensional (1,0) superconformal models and higher gauge theory
,”
J. Math. Phys.
54
,
113509
(
2013
); e-print arXiv:1308.2622 [hep-th].
25.
S.
Lavau
,
H.
Samtleben
, and
T.
Strobl
, “
Hidden Q-structure and Lie 3-algebra for non-abelian superconformal models in six dimensions
,”
J. Geom. Phys.
86
,
497
(
2014
); e-print arXiv:1403.7114 [math-ph].
26.
R.
Zucchini
, “
AKSZ models of semistrict higher gauge theory
,”
J. High Energy Phys.
2013
,
014
; e-print arXiv:1112.2819 [hep-th].
27.
E.
Soncini
and
R.
Zucchini
, “
4-D semistrict higher Chern-Simons theory. I
,”
J. High Energy Phys.
2014
,
79
; e-print arXiv:1406.2197[hep-th].
28.
P.
Ritter
and
C.
Sämann
, “
L-algebra models and higher Chern-Simons theories
,”
Rev. Math. Phys.
28
,
1650021
(
2016
).
29.
R.
Zucchini
, “
A Lie based 4 dimensional higher Chern-Simons theory
,”
J. Math. Phys.
57
(
5
),
052301
(
2016
); e-print arXiv:1512.05977 [hep-th].
30.
D.
Roytenberg
, “
On the structure of graded symplectic supermanifolds and courant algebroids
,” in
Quantization, Poisson Brackets and Beyond
, Contemparory Mathematics Vol. 315, edited by
T.
Voronov
(
American Mathematics Society
,
2002
); e-print arXiv:math.SG/0203110.
31.
M.
Bojowald
,
A.
Kotov
, and
T.
Strobl
, “
Lie algebroid morphisms, Poisson sigma models, and off-shell closed gauge symmetries
,”
J. Geom. Phys.
54
,
400
(
2005
); e-print arXiv:math.DG/0406445.
32.
A.
Kotov
and
T.
Strobl
, “
Characteristic classes associated to Q-bundles
,”
Int. J. Geom. Methods Mod. Phys.
12
,
1550006
(
2015
); e-print arXiv:0711.4106 [math.DG].
33.
M.
Gruetzmann
and
T.
Strobl
, “
General Yang-Mills type gauge theories for p-form gauge fields: From physics-based ideas to a mathematical framework or from bianchi identities to twisted courant algebroids
,”
Int. J. Geom. Methods Mod. Phys.
12
,
1550009
(
2014
); e-print arXiv:1407.6759 [hep-th].
34.
D.
Fiorenza
,
C. L.
Rogers
, and
U.
Schreiber
, “
A higher Chern-Weil derivation of AKSZ σ-models
,”
Int. J. Geom. Methods Mod. Phys.
10
,
1250078
(
2013
); e-print arXiv:1108.4378 [math-ph]].
35.
G.
Barnich
,
F.
Brandt
, and
M.
Henneaux
, “
Local BRST cohomology in gauge theories
,”
Phys. Rep.
338
,
439
(
2000
); e-print arXiv:hep-th/0002245.
36.
L.
Baulieu
and
J.
Thierry-Mieg
, “
The principle of BRS symmetry: An alternative approach to Yang-Mills theories
,”
Nucl. Phys. B
197
,
477
(
1982
).
37.
L.
Baulieu
, “
Anomalies and gauge symmetry
,”
Nucl. Phys. B
241
,
557
(
1984
).
38.
L.
Baulieu
,
Algebraic Construction of Gauge Invariant Theories
, Cargese Summer Institute: Particles and Fields, edited by
M.
Levy
,
J-L.
Basdevant
,
D.
Speiser
,
J.
Weyers
,
M.
Jacob
, and
R.
Gastmans
(
Plenum Press
,
Cargese
,
1983
), Vol. 126, p.
1
.
39.
L.
Bonora
and
M.
Tonin
, “
Superfield formulation of extended BRS symmetry
,”
Phys. Lett. B
98
,
48
(
1981
).
40.
L.
Bonora
,
P.
Pasti
, and
M.
Tonin
, “
Geometric description of extended BRS symmetry in superfield formulation
,”
Nuovo Cimento A
63
,
353
(
1981
).
41.
L.
Bonora
,
P.
Pasti
, and
M.
Tonin
, “
Extended BRS symmetry in nonabelian gauge theories
,”
Nuovo Cimento A
64
,
307
(
1981
).
42.
I. A.
Batalin
and
G. A.
Vilkovisky
, “
Gauge algebra and quantization
,”
Phys. Lett. B
102
,
27
(
1981
).
43.
I. A.
Batalin
and
G. A.
Vilkovisky
, “
Quantization of gauge theories with linearly dependent generators
,”
Phys. Rev. D
28
,
2567
(
1983
);
44.
J.
Gomis
,
J.
Paris
, and
S.
Samuel
, “
Antibracket, antifields and gauge theory quantization
,”
Phys. Rep.
259
,
1
(
1995
); e-print arXiv:hep-th/9412228.
45.
A.
Kapustin
and
R.
Thorngren
, “
Topological field theory on a lattice, discrete theta-angles and confinement
,”
Adv. Theor. Math. Phys.
18
(
5
),
1233
(
2014
); e-print arXiv:1308.2926 [hep-th].
46.
A.
Kapustin
and
R.
Thorngren
, “
Higher symmetry and gapped phases of gauge theories
,” e-print arXiv:1309.4721 [hep-th].
47.
A.
Bullivant
,
M.
Calada
,
Z.
Kádár
,
P.
Martin
, and
J. F.
Martins
, “
Topological phases from higher gauge symmetry in 3 + 1D
,”
Phys. Rev. B
95
,
155118
(
2017
).
48.
A.
Bullivant
,
M.
Calcada
,
Z.
Kdr
,
J. F.
Martins
, and
P.
Martin
, “
Higher lattices, discrete two-dimensional holonomy and topological phases in (3 + 1) D with higher gauge symmetry
,” e-print arXiv:1702.00868 [math-ph].
49.

Here and in the following, we distinguish notationally between an arbitrary chosen but fixed morphism ΥM(C2,C1) and the variable ΦM(C2,C1).

50.
M.
Alexandrov
,
M.
Kontsevich
,
A.
Schwartz
, and
O.
Zaboronsky
, “
The geometry of the master equation and topological quantum field theory
,”
Int. J. Mod. Phys. A
12
,
1405
(
1997
); e-print arXiv:hep-th/9502010.
51.

GR-linearity is here conventionally defined as the property that μ(𝜃u)=(1)n|𝜃|𝜃μ(u) and μ(u𝜃)=μ(u)𝜃 with uC1 and 𝜃GR.

52.
N.
Ikeda
, “
Lectures on AKSZ sigma models for physicists
,” e-print arXiv:1204.3714 [hep-th].
53.
A. S.
Cattaneo
and
F.
Schaetz
, “
Introduction to supergeometry
,”
Rev. Math. Phys.
23
,
669
(
2011
).
54.

Here, CN is the sheaf of smooth realvalued functions on a smooth manifold N and S(E) is the graded symmetric algebra of a graded vector space E. See the cited references for further details.

55.
P.
Iglesias-Zemmour
, “
An introduction to diffeology
,” in
New Spaces in Mathematics and Physics, IHP
,
28 September–2 October 2015
.
56.
A. S.
Schwarz
, “
Geometry of Batalin-Vilkovisky quantization
,”
Commun. Math. Phys.
155
,
249
(
1993
); e-print arXiv:hep-th/9205088.
57.

Here and in the following, we denote by Γ(V) the space of sections of a vector bundle V.

58.

For any integer k and any two graded vector spaces V, W, Homk(V,W) is the set of all degree k linear mappings T:VW. Notice that Homk(V,W)=Hom0(V,W[k]). Usually, one writes Hom(V,W)=Hom0(V,W).

59.

Recall that for a graded vector space V, V is a graded vector space with Vk=Vk. Further, the duality pairing , of V, V pairs Vk and Vk.

60.
P.
Ševera
, L-algebras as 1-jets of simplicial manifolds (and a bit beyond), math.DG/0612349.
61.
If the gradedmanifold categorygrMf is suitably enlarged to accommodate graded functional diffeological spaces as explained in Subsection III A, then one can construct the internal simplicial graded manifold, hom manifold HomsgrMf(NR[1],X). This is generally distinct from the hom manifold defined here, which we call simplicial internal for distinctiveness.
62.
N.
Ikeda
, “
Two-dimensional gravity and nonlinear gauge theory
,”
Annals Phys.
235
,
435
(
1994
); e-print arXiv:hep-th/9312059.
63.
P.
Schaller
and
T.
Strobl
, “
Poisson structure induced (topological) field theories
,”
Mod. Phys. Lett. A
9
,
3129
(
1994
); e-print arXiv:hep-th/9405110.
64.
A. S.
Cattaneo
and
G.
Felder
, “
A path integral approach to the Kontsevich quantization formula
,”
Commun. Math. Phys.
212
,
591
(
2000
); e-print arXiv:math/9902090.
65.
D.
Roytenberg
, “
AKSZ-BV formalism and Courant algebroid-induced topological field theories
,”
Lett. Math. Phys.
79
,
143
(
2007
); e-print arXiv:hep-th/0608150.
You do not currently have access to this content.