We compute the norm of a general Gaussian gauge-covariant multi-mode channel for any , where is a Schatten space. As a consequence, we verify the Gaussian optimizer conjecture and the multiplicativity conjecture in these cases.
REFERENCES
1.
Beigi
, S.
, “Sandwiched Renyi divergence satisfies data processing inequality
,” J. Math. Phys.
54
, 122202
(2013
).2.
De Palma
, G.
, Trevisan
, D.
, and Giovannetti
, V.
, “One-mode quantum-limited Gaussian channels have Gaussian maximizers
,” e-print arXiv:1610.09967.3.
De Palma
, G.
, Trevisan
, D.
, and Giovannetti
, V.
, “Gaussian states minimize the output entropy of one-mode quantum Gaussian channels
,” IEEE Trans. Inf. Theory
63
(1
), 728
–737
(2017
).4.
Giovannetti
, V.
, Holevo
, A.
, and García-Patrón
, R.
, “A solution of Gaussian optimizer conjecture for quantum channels
,” Commun. Math. Phys.
334
(3
), 1553
–1571
(2015
).5.
Holevo
, A. S.
, “Entropy gain and the Choi–Jamiolkowski correspondence for infinite-dimensional quantum evolutions
,” Theor. Math. Phys.
166
(1
), 123
–138
(2011
).6.
Holevo
, A. S.
, Quantum Systems, Channels, Information
(De Gruyter
, Berlin, Boston
, 2012
).7.
Holevo
, A. S.
, “Gaussian optimizers and the additivity problem in quantum information theory
,” Russ. Math. Surv.
70
(2
), 331
–367
(2015
).8.
Lieb
, E. H.
, “Gaussian kernels have only Gaussian maximizers
,” Inventiones Math.
102
, 179
–208
(1990
).9.
Mari
, A.
, Giovannetti
, V.
, and Holevo
, A. S.
, “Quantum state majorization at the output of bosonic Gaussian channels
,” Nat. Commun.
5
, 3826
(2014
).10.
Müller-Hermes
, A.
and Reeb
, D.
, “Monotonicity of the quantum relative entropy under positive maps
,” Ann. Henri Poincaré
18
(5
), 1777
–1788
(2017
).11.
Russo
, B.
and Dye
, H. A.
, “A note on unitary operators in C* -algebras
,” Duke Math. J.
33
, 413
–416
(1966
).12.
Simon
, B.
, Basic Complex Analysis. A Comprehensive Course in Analysis, Part 2A
(American Mathematical Society
, Providence, RI
, 2015
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.