We compute the SpSp norm of a general Gaussian gauge-covariant multi-mode channel for any 1p<, where Sp is a Schatten space. As a consequence, we verify the Gaussian optimizer conjecture and the multiplicativity conjecture in these cases.

1.
Beigi
,
S.
, “
Sandwiched Renyi divergence satisfies data processing inequality
,”
J. Math. Phys.
54
,
122202
(
2013
).
2.
De Palma
,
G.
,
Trevisan
,
D.
, and
Giovannetti
,
V.
, “
One-mode quantum-limited Gaussian channels have Gaussian maximizers
,” e-print arXiv:1610.09967.
3.
De Palma
,
G.
,
Trevisan
,
D.
, and
Giovannetti
,
V.
, “
Gaussian states minimize the output entropy of one-mode quantum Gaussian channels
,”
IEEE Trans. Inf. Theory
63
(
1
),
728
737
(
2017
).
4.
Giovannetti
,
V.
,
Holevo
,
A.
, and
García-Patrón
,
R.
, “
A solution of Gaussian optimizer conjecture for quantum channels
,”
Commun. Math. Phys.
334
(
3
),
1553
1571
(
2015
).
5.
Holevo
,
A. S.
, “
Entropy gain and the Choi–Jamiolkowski correspondence for infinite-dimensional quantum evolutions
,”
Theor. Math. Phys.
166
(
1
),
123
138
(
2011
).
6.
Holevo
,
A. S.
,
Quantum Systems, Channels, Information
(
De Gruyter
,
Berlin, Boston
,
2012
).
7.
Holevo
,
A. S.
, “
Gaussian optimizers and the additivity problem in quantum information theory
,”
Russ. Math. Surv.
70
(
2
),
331
367
(
2015
).
8.
Lieb
,
E. H.
, “
Gaussian kernels have only Gaussian maximizers
,”
Inventiones Math.
102
,
179
208
(
1990
).
9.
Mari
,
A.
,
Giovannetti
,
V.
, and
Holevo
,
A. S.
, “
Quantum state majorization at the output of bosonic Gaussian channels
,”
Nat. Commun.
5
,
3826
(
2014
).
10.
Müller-Hermes
,
A.
and
Reeb
,
D.
, “
Monotonicity of the quantum relative entropy under positive maps
,”
Ann. Henri Poincaré
18
(
5
),
1777
1788
(
2017
).
11.
Russo
,
B.
and
Dye
,
H. A.
, “
A note on unitary operators in C* -algebras
,”
Duke Math. J.
33
,
413
416
(
1966
).
12.
Simon
,
B.
,
Basic Complex Analysis. A Comprehensive Course in Analysis, Part 2A
(
American Mathematical Society
,
Providence, RI
,
2015
).
You do not currently have access to this content.