A statistical experiment on a von Neumann algebra is a parametrized family of normal states on the algebra. This paper introduces the concept of minimal sufficiency for statistical experiments in such operator algebraic situations. We define equivalence relations of statistical experiments indexed by a common parameter set by completely positive or Schwarz coarse-graining and show that any statistical experiment is equivalent to a minimal sufficient statistical experiment unique up to normal isomorphism of outcome algebras. We also establish the relationship between the minimal sufficiency condition for a statistical experiment in this paper and those for subalgebra. These concepts and results are applied to the concatenation relation for completely positive channels with general input and outcome von Neumann algebras. In the case of the quantum-classical channel corresponding to the positive-operator valued measure (POVM), we prove the equivalence of the minimal sufficient condition previously proposed by the author and that in this paper. We also give a characterization of the discreteness of a POVM up to postprocessing equivalence in terms of the corresponding quantum-classical channel.

1.
P. R.
Halmos
and
L. J.
Savage
, “
Application of the Radon-Nikodym theorem to the theory of sufficient statistics
,”
Ann. Math. Stat.
20
,
225
241
(
1949
).
2.
R. R.
Bahadur
, “
Sufficiency and statistical decision functions
,”
Ann. Math. Stat.
25
,
423
462
(
1954
).
3.
H.
Umegaki
, “
Conditional expectation in an operator algebra, III
,”
Kodai Math. Semin. Rep.
11
,
51
64
(
1959
);
H.
Umegaki
, “
Conditional expectation in an operator algebra. IV. Entropy and information
,”
Kodai Math. Semin. Rep.
14
,
59
85
(
1962
).
4.
D.
Petz
, “
Sufficient subalgebras and the relative entropy of states of a von Neumann algebra
,”
Commun. Math. Phys.
105
,
123
131
(
1986
).
5.
D.
Petz
, “
Sufficiency of channels over von Neumann algebras
,”
Q. J. Math.
39
,
97
108
(
1988
).
6.
M.
Guţă
and
A.
Jenčová
, “
Local asymptotic normality in quantum statistics
,”
Commun. Math. Phys.
276
,
341
379
(
2007
).
7.
E.
Torgersen
,
Comparison of Statistical Experiments
(
Cambridge University Press
,
1991
).
8.
A.
Łuczak
, “
Quantum sufficiency in the operator algebra framework
,”
Int. J. Theor. Phys.
53
,
3423
3433
(
2014
).
9.
B.
Kümmerer
and
R.
Nagel
, “
Mean ergodic semigroups on W*-algebras
,”
Acta Sci. Math.
41
,
151
159
(
1979
).
10.
Y.
Kuramochi
, “
Minimal sufficient positive-operator valued measure on a separable Hilbert space
,”
J. Math. Phys.
56
,
102205
(
2015
);
Y.
Kuramochi
, “
Erratum: Minimal sufficient positive-operator valued measure on a separable Hilbert space [J. Math. Phys. 56, 102205 (2015)]
,”
J. Math. Phys.
57
,
089901
(
2016
).
11.
M.
Takesaki
,
Theory of Operator Algebras I
(
Springer
,
1979
).
12.
M.-D.
Choi
, “
A Schwarz inequality for positive linear maps on C*-algebras
,”
Illinois J. Math.
18
,
565
574
(
1974
).
13.
I.
Segal
, “
Equivalences of measure spaces
,”
Am. J. Math.
73
,
275
313
(
1951
).
14.
M.
Takesaki
,
Theory of Operator Algebras II
(
Springer
,
2003
).
15.
M.
Koashi
and
N.
Imoto
, “
Operations that do not disturb partially known quantum states
,”
Phys. Rev. A
66
,
022318
(
2002
).
16.
P.
Hayden
,
R.
Jozsa
,
D.
Petz
, and
A.
Winter
, “
Structure of states which satisfy strong subadditivity of quantum entropy with equality
,”
Commun. Math. Phys.
246
,
359
374
(
2004
).
17.
A. S.
Holevo
, “
Information capacity of a quantum observable
,”
Probl. Inf. Transm.
48
,
1
10
(
2012
).
18.
S.
Dorofeev
and
J.
de Graaf
, “
Some maximality results for effect-valued measures
,”
Indag. Math.
8
,
349
369
(
1997
).
19.
A.
Jenčová
,
S.
Pulmannová
, and
E.
Vinceková
, “
Sharp and fuzzy observables on effect algebras
,”
Int. J. Theor. Phys.
47
,
125
148
(
2008
).
20.
A.
Kechris
,
Classical Descriptive Set Theory
(
Springer
,
1995
).
21.
S.
Sakai
,
C*-Algebras and W*-Algebras
(
Springer
,
1971
).
22.
E.
Størmer
, “
On projection maps of von Neumann algebras
,”
Math. Scand.
30
,
46
50
(
1972
).
You do not currently have access to this content.