In this paper, we give a generic algorithm of the transition operators between Hermitian Young projection operators corresponding to equivalent irreducible representations of 𝖲𝖴(N), using the compact expressions of Hermitian Young projection operators derived in the work of Alcock-Zeilinger and Weigert [eprint arXiv:1610.10088 [math-ph]]. We show that the Hermitian Young projection operators together with their transition operators constitute a fully orthogonal basis for the algebra of invariants of Vm that exhibits a systematically simplified multiplication table. We discuss the full algebra of invariants over V3 and V4 as explicit examples. In our presentation, we make use of various standard concepts, such as Young projection operators, Clebsch-Gordan operators, and invariants (in birdtrack notation). We tie these perspectives together and use them to shed light on each other.

1.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
Compact Hermitian Young projection operators
,”
J. Math. Phys.
58
,
051702
(
2017
).
2.
M.
Gell-Mann
, “
The Eightfold way: A theory of strong interaction symmetry
,” Technical Report TID-12608, CTSL-20 (California Inst. of Tech., Pasadena, Synchrotron Lab.).
3.
M.
Gell-Mann
and
Y.
Neemam
, “
The Eightfold way: A review with a collection of reprints
” (
W. A. Benjamin, Frontiers in Physics
,
New York
),
1964
.
4.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
A construction algorithm for the singlets of 𝖲𝖴(N) and what they tell us about Wilson line correlators
” (unpublished).
5.
A.
Clebsch
and
P.
Gordan
,
Theorie der abelschen Funktionen
(
Teubner
,
1866
).
6.
W. K.
Tung
,
Group Theory in Physics
(
World Scientific
,
Singapore
,
1985
).
7.
W.
Fulton
and
J.
Harris
,
Representation Theory: A First Course
(
Springer
,
USA
,
2004
).
8.
M. E.
Peskin
and
D. V.
Schroeder
,
An Introduction to Quantum Field Theory
(
Addison-Wesley
,
Reading, USA
,
1995
).
9.
E.
Cartan
,
Sur la Structure des Groupes de Transformations Finis et Continus
, Thèses Présentées a la Faculté des Sciences de Paris pour Obtenir le Grade de Docteur ès Sciences Mathématiques (
Nony
,
1894
).
10.
A.
Young
, “
On quantitative substitutional analysis - III
,”
Proc. London Math. Soc.
s2-28
,
255
292
(
1928
).
11.
H.
Weyl
,
The Classical Groups: Their Invariants and Representations
, 2nd ed. (
University Press
,
Princeton, USA
,
1946
).
12.
P.
Cvitanović
,
Group Theory: Birdtracks, Lie’s, and Exceptional Groups
(
University Press
,
Princeton, USA
,
2008
).
13.
S.
Keppeler
and
M.
Sjödahl
, “
Hermitian Young operators
,”
J. Math. Phys.
55
,
021702
(
2014
); e-print arXiv:1307.6147 [math-ph].
14.
W.
Fulton
,
Young Tableaux
(
University Press
,
Cambridge, UK
,
1997
).
15.
B.
Sagan
,
The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions
, 2nd ed. (
Springer
,
New York, USA
,
2000
).
16.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
Simplification rules for birdtrack operators
,”
J. Math. Phys.
58
,
051701
(
2017
).
17.
R.
Penrose
, “
Angular momentum: An approach to combinatorical space-time
,” in
Quantum Theory and Beyond
, edited by
T.
Bastin
(
Cambridge University Press
,
Cambridge, UK
,
1971
).
18.
R.
Penrose
, “
Applications of negative dimension tensors
,” in
Combinatorical Mathematics and its Applications
, edited by
D.
Welsh
(
Academic Press
,
New York, USA
,
1971
), pp.
221
244
.
19.
R.
Penrose
and
M. A. H.
MacCallum
, “
Twistor theory: An approach to the quantization of fields and space-time
,”
Phys. Rep.
6
,
241
316
(
1972
).
20.
D.
Littlewood
,
The Theory of Group Characters and Matrix Representations of Groups
, 2nd ed. (
Oxford University Press
,
Clarendon, UK
,
1950
).
21.
I.
Schensted
,
A Course on the Application of Group Theory to Quantum Mechanics
(
Neo Press
,
Peaks Island, ME, USA
,
1976
).
22.
K.
Glass
and
C.-K.
Ng
, “
A simple proof of the Hook length formula
,”
Am. Math. Mon.
111
(
8
),
700
704
(
2004
).
23.
M.
Artin
,
Algebra
, 2nd ed. (
Prentice Hall
,
Boston
,
2011
).
24.
M.
Sjödahl
and
S.
Keppeler
, “
Tools for calculations in color space
,” in
PoS DIS2013, 21st International Workshop on Deep-Inelastic Scattering and Related Subjects
(DIS,
2013
), p.
166
; e-print arXiv:1307.1319 [hep-ph].
25.
S.
Keppeler
and
M.
Sjödahl
, “
Orthogonal multiplet bases in SU(Nc) color space
,”
J. High Energy Phys.
2012
(
09
),
124
; e-print arXiv:1207.0609 [hep-ph].
You do not currently have access to this content.