In this paper, we describe a compact and practical algorithm to construct Hermitian Young projection operators for irreducible representations of the special unitary group 𝖲𝖴(N) and discuss why ordinary non-Hermitian Young projection operators are unsuitable for physics applications. The proof of this construction algorithm uses the iterative method described by Keppeler and Sjödahl [J. Math. Phys. 55, 021702 (2014)]. We further show that Hermitian Young projection operators share desirable properties with Young tableaux, namely, a nested hierarchy when “adding a particle.” We close by exhibiting the enormous advantage of the Hermitian Young projection operators constructed in this paper over those given by Keppeler and Sjödahl.

1.
S.
Keppeler
and
M.
Sjödahl
, “
Hermitian Young operators
,”
J. Math. Phys.
55
,
021702
(
2014
); e-print arXiv:1307.6147 [math-ph].
2.
W. K.
Tung
,
Group Theory in Physics
(
World Scientific
,
Singapore
,
1985
).
3.
W.
Fulton
and
J.
Harris
,
Representation Theory—A First Course
(
Springer
,
USA
,
2004
).
4.
M. E.
Peskin
and
D. V.
Schroeder
,
An Introduction to Quantum Field Theory
(
Addison-Wesley
,
Reading, USA
,
1995
).
5.
Y. V.
Kovchegov
,
J.
Kuokkanen
,
K.
Rummukainen
, and
H.
Weigert
, “
Subleading-N(c) corrections in non-linear small-x evolution
,”
Nucl. Phys. A
823
,
47
82
(
2009
); e-print arXiv:0812.3238 [hep-ph].
6.
C.
Marquet
and
H.
Weigert
, “
New observables to test the color glass condensate beyond the large-Nc limit
,”
Nucl. Phys. A
843
,
68
97
(
2010
); e-print arXiv:1003.0813 [hep-ph].
7.
T.
Lappi
,
A.
Ramnath
,
K.
Rummukainen
, and
H.
Weigert
, “
JIMWLK evolution of the odderon
,”
Phys. Rev. D
94
,
054014
(
2016
); e-print arXiv:1606.00551 [hep-ph].
8.
E.
Cartan
,
Sur la Structure des Groupes de Transformations Finis et Continus
, Thèses Présentées a la Faculté des Sciences de Paris pour Obtenir le Grade de Docteur ès Sciences Mathématiques (
Nony
,
1894
).
9.
M.
Gell-Mann
, “
The Eightfold way: A theory of strong interaction symmetry
,” Technical Report TID-12608, CTSL-20 (
California Inst. of Tech.
,
Pasadena, Synchrotron Lab.
).
10.
M.
Gell-Mann
and
Y.
Neemam
, “
The Eightfold way: A review with a collection of reprints
” (
W. A. Benjamin, Frontiers in Physics
,
New York
),
1964
.
11.
Y.
Kosmann-Schwarzbach
,
Groups and Symmetries—From Finite Groups to Lie Groups
(
Springer
,
New York
,
2000
).
12.
D.
Griffiths
,
Introduction to Elementary Particles
(
Wiley-VCH
,
Weinheim, Germany
,
2008
).
13.
W.
Fulton
,
Young Tableaux
(
University Press
,
Cambridge, UK
,
1997
).
14.
A.
Young
, “
On quantitative substitutional analysis—III
,”
Proc. London Math. Soc.
s2-28
,
255
292
(
1928
).
15.
H.
Weyl
,
The Classical Groups, Their Invariants and Representations
, 2nd ed. (
University Press
,
Princeton, USA
,
1946
).
16.
P.
Cvitanović
,
Group Theory: Birdtracks, Lie’s and Exceptional Groups
(
University Press
,
Princeton, USA
,
2008
), http://birdtracks.eu.
17.
N.
Bourbaki
, “
Lie groups and lie algebras
,” in
Elements of Mathematics
(
Springer
,
New York, USA
,
2000
), Chap. VII–IX.
18.
D.
Littlewood
,
The Theory of Group Characters and Matrix Representations of Groups
, 2nd ed. (
Oxford University Press
,
Clarendon, UK
,
1950
).
19.
R.
Penrose
, “
Angular momentum: An approach to combinatorical space-time
,” in
Quantum Theory and Beyond
, edited by
T.
Bastin
(
Cambridge University Press
,
Cambridge, UK
,
1971
).
20.
R.
Penrose
, “
Applications of negative dimension tensors
,” in
Combinatorical Mathematics and its Applications
, edited by
D.
Welsh
(
Academic Press
,
New York, USA
,
1971
), pp.
221
244
.
21.
R.
Penrose
and
M. A. H.
MacCallum
, “
Twistor theory: An approach to the quantization of fields and space-time
,”
Phys. Rep.
6
,
241
316
(
1972
).
22.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
A construction algorithm for the singlets of 𝖲𝖴(N) and what they tell us about Wilson line correlators
” (unpublished).
23.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
Simplification rules for birdtrack operators
,”
J. Math. Phys.
58
,
051701
(
2017
).
24.
B.
Sagan
,
The Symmetric Group—Representations, Combinatorical Algorithms, and Symmetric Functions
, 2nd ed. (
Springer
,
New York, USA
,
2000
).
25.
I.
Schensted
,
A Course on the Application of Group Theory to Quantum Mechanics
(
Neo Press
,
Peaks Island, ME, USA
,
1976
).
26.
M.
Sjödahl
and
S.
Keppeler
, “
Tools for calculations in color space
,” in
PoS DIS2013, 21st International Workshop on Deep-Inelastic Scattering and Related Subjects
(
DIS
,
2013
), p.
166
; e-print arXiv:1307.1319 [hep-ph].
27.
S.
Keppeler
and
M.
Sjödahl
, “
Orthogonal multiplet bases in SU(Nc) color space
,”
J. High Energy Phys.
2012
(
09
),
124
; e-print arXiv:1207.0609 [hep-ph].
28.
S.
Lang
,
Linear Algebra
, 3rd ed. (
Springer
,
New York
,
1987
).
29.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
Transition operators
,”
J. Math. Phys.
58
,
051703
(
2017
).
You do not currently have access to this content.