In this paper, we describe a compact and practical algorithm to construct Hermitian Young projection operators for irreducible representations of the special unitary group and discuss why ordinary non-Hermitian Young projection operators are unsuitable for physics applications. The proof of this construction algorithm uses the iterative method described by Keppeler and Sjödahl [J. Math. Phys. 55, 021702 (2014)]. We further show that Hermitian Young projection operators share desirable properties with Young tableaux, namely, a nested hierarchy when “adding a particle.” We close by exhibiting the enormous advantage of the Hermitian Young projection operators constructed in this paper over those given by Keppeler and Sjödahl.
REFERENCES
1.
S.
Keppeler
and M.
Sjödahl
, “Hermitian Young operators
,” J. Math. Phys.
55
, 021702
(2014
); e-print arXiv:1307.6147 [math-ph].2.
W. K.
Tung
, Group Theory in Physics
(World Scientific
, Singapore
, 1985
).3.
W.
Fulton
and J.
Harris
, Representation Theory—A First Course
(Springer
, USA
, 2004
).4.
M. E.
Peskin
and D. V.
Schroeder
, An Introduction to Quantum Field Theory
(Addison-Wesley
, Reading, USA
, 1995
).5.
Y. V.
Kovchegov
, J.
Kuokkanen
, K.
Rummukainen
, and H.
Weigert
, “Subleading-N(c) corrections in non-linear small-x evolution
,” Nucl. Phys. A
823
, 47
–82
(2009
); e-print arXiv:0812.3238 [hep-ph].6.
C.
Marquet
and H.
Weigert
, “New observables to test the color glass condensate beyond the large-Nc limit
,” Nucl. Phys. A
843
, 68
–97
(2010
); e-print arXiv:1003.0813 [hep-ph].7.
T.
Lappi
, A.
Ramnath
, K.
Rummukainen
, and H.
Weigert
, “JIMWLK evolution of the odderon
,” Phys. Rev. D
94
, 054014
(2016
); e-print arXiv:1606.00551 [hep-ph].8.
E.
Cartan
, Sur la Structure des Groupes de Transformations Finis et Continus
, Thèses Présentées a la Faculté des Sciences de Paris pour Obtenir le Grade de Docteur ès Sciences Mathématiques (Nony
, 1894
).9.
M.
Gell-Mann
, “The Eightfold way: A theory of strong interaction symmetry
,” Technical Report TID-12608, CTSL-20 (California Inst. of Tech.
, Pasadena, Synchrotron Lab.
).10.
M.
Gell-Mann
and Y.
Neemam
, “The Eightfold way: A review with a collection of reprints
” (W. A. Benjamin, Frontiers in Physics
, New York
), 1964
.11.
Y.
Kosmann-Schwarzbach
, Groups and Symmetries—From Finite Groups to Lie Groups
(Springer
, New York
, 2000
).12.
D.
Griffiths
, Introduction to Elementary Particles
(Wiley-VCH
, Weinheim, Germany
, 2008
).13.
14.
A.
Young
, “On quantitative substitutional analysis—III
,” Proc. London Math. Soc.
s2-28
, 255
–292
(1928
).15.
H.
Weyl
, The Classical Groups, Their Invariants and Representations
, 2nd ed. (University Press
, Princeton, USA
, 1946
).16.
P.
Cvitanović
, Group Theory: Birdtracks, Lie’s and Exceptional Groups
(University Press
, Princeton, USA
, 2008
), http://birdtracks.eu.17.
N.
Bourbaki
, “Lie groups and lie algebras
,” in Elements of Mathematics
(Springer
, New York, USA
, 2000
), Chap. VII–IX.18.
D.
Littlewood
, The Theory of Group Characters and Matrix Representations of Groups
, 2nd ed. (Oxford University Press
, Clarendon, UK
, 1950
).19.
R.
Penrose
, “Angular momentum: An approach to combinatorical space-time
,” in Quantum Theory and Beyond
, edited by T.
Bastin
(Cambridge University Press
, Cambridge, UK
, 1971
).20.
R.
Penrose
, “Applications of negative dimension tensors
,” in Combinatorical Mathematics and its Applications
, edited by D.
Welsh
(Academic Press
, New York, USA
, 1971
), pp. 221
–244
.21.
R.
Penrose
and M. A. H.
MacCallum
, “Twistor theory: An approach to the quantization of fields and space-time
,” Phys. Rep.
6
, 241
–316
(1972
).22.
J.
Alcock-Zeilinger
and H.
Weigert
, “A construction algorithm for the singlets of and what they tell us about Wilson line correlators
” (unpublished).23.
J.
Alcock-Zeilinger
and H.
Weigert
, “Simplification rules for birdtrack operators
,” J. Math. Phys.
58
, 051701
(2017
).24.
B.
Sagan
, The Symmetric Group—Representations, Combinatorical Algorithms, and Symmetric Functions
, 2nd ed. (Springer
, New York, USA
, 2000
).25.
I.
Schensted
, A Course on the Application of Group Theory to Quantum Mechanics
(Neo Press
, Peaks Island, ME, USA
, 1976
).26.
M.
Sjödahl
and S.
Keppeler
, “Tools for calculations in color space
,” in PoS DIS2013, 21st International Workshop on Deep-Inelastic Scattering and Related Subjects
(DIS
, 2013
), p. 166
; e-print arXiv:1307.1319 [hep-ph].27.
S.
Keppeler
and M.
Sjödahl
, “Orthogonal multiplet bases in SU(Nc) color space
,” J. High Energy Phys.
2012
(09
), 124
; e-print arXiv:1207.0609 [hep-ph].28.
29.
J.
Alcock-Zeilinger
and H.
Weigert
, “Transition operators
,” J. Math. Phys.
58
, 051703
(2017
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.